M. - ebooki
Tytuły autora: M. dostępne w księgarni Ebookpoint
-
Power BI for Finance. Design effective dashboards, models, and forecasts for finance teams
-
SQL for Data Analytics. Analyze data effectively, uncover insights and master advanced SQL for real-world applications - Fourth Edition
-
The Definitive Guide to Microsoft Fabric. From discovery to building a unified, secure, and scalable data platform
-
The Official MongoDB Guide. Resilience, scalability, security and performance
-
SQL Crash Course
-
Data Preparation and Analysis
-
Neo4j: The Definitive Guide. Hands-On Recipes for Production-Ready Graph Implementations
-
Power Query w Excelu i Power BI. Zbieranie i przekształcanie danych. Wydanie II
-
Building Neo4j-Powered Applications with LLMs. Create LLM-driven search and recommendations applications with Haystack, LangChain4j, and Spring AI
-
Modelowanie danych przy użyciu Microsoft Power BI
-
DuckDB: Up and Running
-
Prywatność danych w praktyce. Skuteczna ochrona prywatności i bezpieczeństwa danych
-
Aerospike: Up and Running. Developing on a Modern Operational Database for Globally Distributed Apps
-
Amazon DynamoDB - The Definitive Guide. Explore enterprise-ready, serverless NoSQL with predictable, scalable performance
-
Struktury danych z przymrużeniem oka. Zabawna przygoda z przykładami pachnącymi kawą
-
SQL Pocket Primer. A Comprehensive Guide to SQL and MySQL for Data Professionals
-
Streaming Databases
-
Learn SQL using MySQL in One Day and Learn It Well. SQL for beginners with Hands-on Project
-
The Definitive Guide to Data Integration. Unlock the power of data integration to efficiently manage, transform, and analyze data
-
PostgreSQL 15 Cookbook
-
Big Data and Analytics
-
Azure Data Factory Cookbook. Build ETL, Hybrid ETL, and ELT pipelines using ADF, Synapse Analytics, Fabric and Databricks - Second Edition
-
Deciphering Data Architectures
-
Mastering Amazon Relational Database Service for MySQL
-
Data Engineering with Scala and Spark. Build streaming and batch pipelines that process massive amounts of data using Scala
-
Principles of Data Science. A beginner's guide to essential math and coding skills for data fluency and machine learning - Third Edition
-
PowerShell Essential Guide
-
Cracking the Data Engineering Interview. Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio
-
Analityk danych. Przewodnik po data science, statystyce i uczeniu maszynowym
-
Google Analytics od podstaw. Analiza wpływu biznesowego i wyznaczanie trendów
-
Building ETL Pipelines with Python. Create and deploy enterprise-ready ETL pipelines by employing modern methods
-
Practical MongoDB Aggregations. The official guide to developing optimal aggregation pipelines with MongoDB 7.0
-
Building Statistical Models in Python. Develop useful models for regression, classification, time series, and survival analysis
-
Serverless Machine Learning with Amazon Redshift ML. Create, train, and deploy machine learning models using familiar SQL commands
-
Mastering Tableau 2023. Implement advanced business intelligence techniques, analytics, and machine learning models with Tableau - Fourth Edition
-
Microsoft Power BI. Jak modelować i wizualizować dane oraz budować narracje cyfrowe. Wydanie III
-
Responsible AI in the Enterprise. Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI
-
Poznaj Tableau 2022. Wizualizacja danych, interaktywna analiza danych i umiejętność data storytellingu. Wydanie V
-
Graph Data Modeling in Python. A practical guide to curating, analyzing, and modeling data with graphs
-
Inżynieria danych w praktyce. Kluczowe koncepcje i najlepsze technologie
-
Unleashing Your Data with Power BI Machine Learning and OpenAI. Embark on a data adventure and turn your raw data into meaningful insights
-
Potoki danych. Leksykon kieszonkowy. Przenoszenie i przetwarzanie danych na potrzeby ich analizy
-
Platform and Model Design for Responsible AI. Design and build resilient, private, fair, and transparent machine learning models
-
Siatka danych. Nowoczesna koncepcja samoobsługowej infrastruktury danych
-
SQL Query Design Patterns and Best Practices. A practical guide to writing readable and maintainable SQL queries using its design patterns
-
Machine Learning in Microservices. Productionizing microservices architecture for machine learning solutions
-
Spark. Błyskawiczna analiza danych. Wydanie II
-
Azure Machine Learning Engineering. Deploy, fine-tune, and optimize ML models using Microsoft Azure
-
Data Modeling with Tableau. A practical guide to building data models using Tableau Prep and Tableau Desktop
-
Machine Learning Model Serving Patterns and Best Practices. A definitive guide to deploying, monitoring, and providing accessibility to ML models in production
-
CompTIA Data+: DAO-001 Certification Guide. Complete coverage of the new CompTIA Data+ (DAO-001) exam to help you pass on the first attempt
-
Real-World Implementation of C# Design Patterns. Overcome daily programming challenges using elements of reusable object-oriented software
-
Azure Data Engineering Cookbook. Get well versed in various data engineering techniques in Azure using this recipe-based guide - Second Edition
-
Production-Ready Applied Deep Learning. Learn how to construct and deploy complex models in PyTorch and TensorFlow deep learning frameworks
-
SQL for Data Analytics. Harness the power of SQL to extract insights from data - Third Edition
-
Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly
-
Learning Tableau 2022. Create effective data visualizations, build interactive visual analytics, and improve your data storytelling capabilities - Fifth Edition
-
Codeless Time Series Analysis with KNIME. A practical guide to implementing forecasting models for time series analysis applications
-
Simplifying Data Engineering and Analytics with Delta. Create analytics-ready data that fuels artificial intelligence and business intelligence
-
Feature Store for Machine Learning. Curate, discover, share and serve ML features at scale
-
Microsoft Power BI. Jak modelować i wizualizować dane oraz budować narracje cyfrowe. Wydanie II
-
Artificial Intelligence with Power BI. Take your data analytics skills to the next level by leveraging the AI capabilities in Power BI
-
Microsoft Power BI Performance Best Practices. A comprehensive guide to building consistently fast Power BI solutions
-
Zaawansowana analiza danych. Jak przejść z arkuszy Excela do Pythona i R
-
Projektowanie baz danych dla każdego. Przewodnik krok po kroku. Wydanie IV
-
Actionable Insights with Amazon QuickSight. Develop stunning data visualizations and machine learning-driven insights with Amazon QuickSight
-
Oracle 19c AutoUpgrade Best Practices
-
Dane grafowe w praktyce. Jak technologie grafowe ułatwiają rozwiązywanie złożonych problemów
-
Big Data. Krótkie Wprowadzenie 30
-
Skazany na sukces. Kariera w Data Science
-
RDBMS In-Depth
-
Redis? Deep Dive
-
Mastering Kafka Streams and ksqlDB
-
Hurtownie danych. Od przetwarzania analitycznego do raportowania. Wydanie II
-
MongoDB Fundamentals. A hands-on guide to using MongoDB and Atlas in the real world
-
Building Analytics Teams. Harnessing analytics and artificial intelligence for business improvement
-
Uczenie głębokie od zera. Podstawy implementacji w Pythonie
-
Oracle GoldenGate With Microservices
-
Tableau Desktop Certified Associate: Exam Guide. Develop your Tableau skills and prepare for Tableau certification with tips from industry experts
-
Wprowadzenie do systemów baz danych. Wydanie VII
-
Storytelling danych. Poradnik wizualizacji danych dla profesjonalistów
-
Principles of Data Science. Understand, analyze, and predict data using Machine Learning concepts and tools - Second Edition
-
Inżynieria niezawodnych baz danych. Projektowanie systemów odpornych na błędy
-
IBM DB2 11.1 Certification Guide. Explore techniques to master database programming and administration tasks in IBM Db2
-
Java: Data Science Made Easy. Data collection, processing, analysis, and more
-
R: Mining spatial, text, web, and social media data. Create and customize data mining algorithms
-
Kompletny przewodnik po DAX. Analiza biznesowa przy użyciu Microsoft Excel, SQL Server Analysis Services i Power BI
-
Python: Data Analytics and Visualization. Perform data processing and analysis with the help of python libraries, gain practical insights into predictive modeling and generate effective results in a variety of visually appealing charts using the plotting packages in Python
-
Splunk: Enterprise Operational Intelligence Delivered. Machine data made accessible
-
MongoDB w akcji
-
Scientific Computing with Python 3. Click here to enter text
-
Apache Spark for Data Science Cookbook. Solve real-world analytical problems
-
Practical Business Intelligence. Optimize Business Intelligence for Efficient Data Analysis
-
Principles of Data Science. Mathematical techniques and theory to succeed in data-driven industries
-
MDX with Microsoft SQL Server 2016 Analysis Services Cookbook. Over 70 practical recipes to analyze multi-dimensional data in SQL Server 2016 Analysis Services cubes - Third Edition
-
Bayesian Analysis with Python. Click here to enter text
-
Python: Real World Machine Learning. Take your Python Machine learning skills to the next level
-
Python Data Science Essentials. Learn the fundamentals of Data Science with Python - Second Edition
-
Splunk Best Practices. Operational intelligent made simpler
-
Hadoop: Data Processing and Modelling. Data Processing and Modelling
-
Mastering Data Mining with Python - Find patterns hidden in your data. Find patterns hidden in your data
-
Mastering Social Media Mining with Python. Unearth deeper insight from your social media data with advanced Python techniques for acquisition and analysis
-
Smarter Decisions - The Intersection of Internet of Things and Decision Science. A comprehensive guide for solving IoT business problems using decision science
-
Advanced Machine Learning with Python. Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python
-
Mastering Python Data Analysis. Become an expert at using Python for advanced statistical analysis of data using real-world examples
-
R: Data Analysis and Visualization. Click here to enter text
-
T-SQL dla zaawansowanych. Przewodnik programisty. Wydanie IV
-
Advanced Splunk. Click here to enter text
-
Splunk Operational Intelligence Cookbook. Transform Big Data into business-critical insights and rethink operational Intelligence with Splunk - Second Edition
-
Data Analytics with Hadoop. An Introduction for Data Scientists
-
Mastering Redis. Take your knowledge of Redis to the next level to build enthralling applications with ease
-
Learning Probabilistic Graphical Models in R. Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R
-
Practical Data Analysis Cookbook. Over 60 practical recipes on data exploration and analysis
-
Delphi 2007 dla WIN32 i bazy danych
-
Learning Qlik Sense: The Official Guide. Get the most out of your Qlik Sense investment with the latest insight and guidance direct from the Qlik Sense team - Second Edition
-
SAP Data Services 4.x Cookbook. Delve into the SAP Data Services environment to efficiently prepare, implement, and develop ETL processes
-
Learning PostgreSQL. Create, develop and manage relational databases in real world applications using PostgreSQL
-
Mastering Tableau 2026. Implement advanced data visualizations, BI techniques and AI-powered analytics with Tableau - Fifth Edition
-
Microsoft Power BI Quick Start Guide. The ultimate beginner's guide to Power BI, data storytelling, AI tools, and Microsoft Fabric - Fourth Edition
-
Building Responsible AI with Python. Learn to identify and mitigate bias with hands-on code examples

