ODBIERZ TWÓJ BONUS :: »

Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly

Język publikacji: 1
Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly Michael Walker - okladka książki

Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly Michael Walker - okladka książki

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
542
Dostępne formaty:
     PDF
     ePub

Ebook 29,90 zł najniższa cena z 30 dni

119,00 zł (-10%)
107,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

29,90 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results.
As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book.
By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.

Wybrane bestsellery

O autorze książki

Michael Walker jest analitykiem danych. Od ponad trzydziestu lat zajmuje się tym zagadnieniem w różnych instytucjach edukacyjnych. Od 2006 roku prowadzi na wyższych uczelniach zajęcia z analizy danych, metod badawczych, statystyki i programowania. Poza tym tworzy raporty dla fundacji i sektora publicznego, a także publikuje analizy w czasopismach naukowych.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Sposób płatności