ODBIERZ TWÓJ BONUS :: »

Learning Probabilistic Graphical Models in R. Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R

Język publikacji: angielskim
Learning Probabilistic Graphical Models in R. Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R David Bellot, Dan Toomey - okladka książki

Learning Probabilistic Graphical Models in R. Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R David Bellot, Dan Toomey - okladka książki

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
250
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook 98,10 zł najniższa cena z 30 dni

109,00 zł (-73%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

98,10 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models.
We’ll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we’ll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you’ll see the advantage of going probabilistic when you want to do prediction.
Next, you’ll master using R packages and implementing its techniques. Finally, you’ll be presented with machine learning applications that have a direct impact in many fields. Here, we’ll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems.
13 Lat Ebookpoint - AFTER PARTY!

Wybrane bestsellery

O autorach książki

David Bellot is a PhD graduate in computer science from INRIA, France, with a focus on Bayesian machine learning. He was a postdoctoral fellow at the University of California, Berkeley, and worked for companies such as Intel, Orange, and Barclays Bank. He currently works in the financial industry, where he develops financial market prediction algorithms using machine learning. He is also a contributor to open source projects such as the Boost C++ library.
Dan Toomey has been developing application software for over 20 years. He has worked in a variety of industries and companies, in roles from sole contributor to VP/CTO-level. For the last few years, he has been contracting for companies in the eastern Massachusetts area. Dan has been contracting under Dan Toomey Software Corp. Dan has also written R for Data Science, Jupyter for Data Sciences, and the Jupyter Cookbook, all with Packt.

David Bellot, Dan Toomey - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Sposób płatności