ODBIERZ TWÓJ BONUS :: »

    Python Machine Learning - Second Edition (ebook)(audiobook)(audiobook) Książka w języku angielskim

    Okładka książki/ebooka Python Machine Learning - Second Edition

    Okładka książki Python Machine Learning - Second Edition

    Okładka książki Python Machine Learning - Second Edition

    Okładka książki Python Machine Learning - Second Edition

    Ocena:
    Bądź pierwszym, który oceni tę książkę
    Stron:
    622
    3w1 w pakiecie:
    PDF
    ePub
    Mobi

    Ebook

    149,00 zł

    Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

    Przenieś na półkę

    Do przechowalni

    Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries.

    About This Book

    • Second edition of the bestselling book on Machine Learning
    • A practical approach to key frameworks in data science, machine learning, and deep learning
    • Use the most powerful Python libraries to implement machine learning and deep learning
    • Get to know the best practices to improve and optimize your machine learning systems and algorithms

    Who This Book Is For

    If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data.

    What You Will Learn

    • Understand the key frameworks in data science, machine learning, and deep learning
    • Harness the power of the latest Python open source libraries in machine learning
    • Explore machine learning techniques using challenging real-world data
    • Master deep neural network implementation using the TensorFlow library
    • Learn the mechanics of classification algorithms to implement the best tool for the job
    • Predict continuous target outcomes using regression analysis
    • Uncover hidden patterns and structures in data with clustering
    • Delve deeper into textual and social media data using sentiment analysis

    In Detail

    Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis.

    Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library.

    Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world.

    If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn.

    Style and Approach

    Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

    O autorach

    Sebastian Raschka jest ekspertem w dziedzinie analizy danych i uczenia maszynowego. Obecnie przygotowuje doktorat na Michigan State University z metod obliczeniowych w biologii statystycznej. Biegle posługuje się Pythonem. Raschka bierze również udział w różnych projektach open source i wdraża nowe metody uczenia maszynowego. W wolnym czasie pracuje nad modelami predykcyjnymi dyscyplin sportowych. Jeżeli nie siedzi przed monitorem, chętnie uprawia sport.

    Dr Vahid Mirjalili zajmuje się stosowaniem uczenia maszynowego w rozpoznawaniu obrazów i zwiększaniu prywatności przy użyciu danych biometrycznych. Projektuje też modele sieci neuronowych, które mają ułatwiać wykrywanie pieszych przez pojazdy autonomiczne.

    Zamknij

    Wybierz metodę płatności

    Zamknij Pobierz aplikację mobilną Ebookpoint