ODBIERZ TWÓJ BONUS :: »

Python. Machine learning i deep learning. Biblioteki scikit-learn i TensorFlow 2. Wydanie III

Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
4.6/6  Opinie: 14
Stron:
672
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Książka 89,40 zł najniższa cena z 30 dni

149,00 zł (-30%)
104,30 zł

Dodaj do koszyka Wysyłamy w 24h

89,40 zł najniższa cena z 30 dni

Ebook 39,90 zł najniższa cena z 30 dni

149,00 zł (-40%)
89,40 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

39,90 zł najniższa cena z 30 dni

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Prezent last minute w ebookpoint.pl
Druk na żądanie

Uczenie maszynowe jest jedną z najbardziej fascynujących technologii naszych czasów - rozwojem jego najróżniejszych zastosowań zajmują się tacy giganci jak Google, Facebook, Apple, Amazon czy IBM. Uczenie maszynowe otwiera zupełnie nowe możliwości i powoli staje się nieodzowne: wystarczy wymienić asystenty głosowe w smartfonach, chatboty ułatwiające klientom wybór produktu, a także sieci ułatwiające podejmowanie decyzji o inwestycjach giełdowych, filtrujące niechciane wiadomości e-mail czy wspomagające diagnostykę medyczną.

Oto obszerny przewodnik po uczeniu maszynowym i uczeniu głębokim w Pythonie. Zawiera dokładne omówienie najważniejszych technik uczenia maszynowego oraz staranne wyjaśnienie zasad rządzących tą technologią. Poszczególne zagadnienia zilustrowano mnóstwem wyjaśnień, wizualizacji i przykładów, co znakomicie ułatwia zrozumienie materiału i sprawne rozpoczęcie samodzielnego budowania aplikacji i modeli, takich jak te służące do klasyfikacji obrazów, odkrywania ukrytych wzorców czy wydobywania dodatkowych informacji z danych. Wydanie trzecie zostało zaktualizowane - znalazł się w nim opis biblioteki TensorFlow 2 i najnowszych dodatków do biblioteki scikit-learn. Dodano również wprowadzenie do dwóch nowatorskich technik: uczenia przez wzmacnianie i budowy generatywnych sieci przeciwstawnych (GAN).

W książce między innymi:

  • platformy, modele i techniki uczenia maszynowego
  • wykorzystywanie biblioteki scikit-learn i TensorFlow
  • sieci neuronowe, sieci GAN i inne
  • przygotowywanie danych dla modeli uczenia maszynowego
  • ocena i strojenie modeli
  • analizy: regresyjna, skupień i sentymentów

Uczenie głębokie z Pythonem: zrozum i zastosuj!

Wybrane bestsellery

O autorach książki

Sebastian Raschka jest ekspertem w dziedzinie analizy danych i uczenia maszynowego. Obecnie przygotowuje doktorat na Michigan State University z metod obliczeniowych w biologii statystycznej. Biegle posługuje się Pythonem. Raschka bierze również udział w różnych projektach open source i wdraża nowe metody uczenia maszynowego. W wolnym czasie pracuje nad modelami predykcyjnymi dyscyplin sportowych. Jeżeli nie siedzi przed monitorem, chętnie uprawia sport.

Dr Vahid Mirjalili zajmuje się stosowaniem uczenia maszynowego w rozpoznawaniu obrazów i zwiększaniu prywatności przy użyciu danych biometrycznych. Projektuje też modele sieci neuronowych, które mają ułatwiać wykrywanie pieszych przez pojazdy autonomiczne.

Sebastian Raschka, Vahid Mirjalili - pozostałe książki

Zobacz pozostałe książki z serii

Helion - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Książka
104,30 zł
Dodaj do koszyka
Ebook
89,40 zł
Dodaj do koszyka
Sposób płatności