ODBIERZ TWÓJ BONUS :: »

Optimizing AI and Machine Learning Solutions Mirza Rahim Baig

Język publikacji: 1
Autor:
Mirza Rahim Baig
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
392
Dostępne formaty:
     ePub
     Mobi
Czytaj fragment

Ebook 39,90 zł najniższa cena z 30 dni

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

39,90 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

Build high-impact ML/AI solutions by optimizing each step

Key Features
Build and fine-tune models for maximum performance.
Practical tips to make your own state-of-the-art AI/ML models.
ML/AI problem solving tips with multiple case studies to tackle real-world challenges.

Description
This book approaches data science solution building using a principled framework and case studies with extensive hands-on guidance. It will teach the readers optimization at each step, whether it is problem formulation or hyperparameter tuning for deep learning models.

This book keeps the reader pragmatic and guides them toward practical solutions by discussing the essential ML concepts, including problem formulation, data preparation, and evaluation techniques. Further, the reader will be able to learn how to apply model optimization with advanced algorithms, hyperparameter tuning, and strategies against overfitting. They will also benefit from deep learning by optimizing models for image processing, natural language processing, and specialized applications. The reader can put theory into practice with hands-on case studies and code examples, reinforcing their understanding.

With this book, the reader will be able to create high-impact, high-value ML/AI solutions by optimizing each step of the solution building process, which is the ultimate goal of every data science professional.

What you will learn
End-to-end solutions to ML/AI problems.
Data augmentation and transfer learning.
Optimizing AI/ML solutions at each step of development.
Multiple hands-on real case studies.
Choose between various ML/AI models.

Who this book is for
This book empowers data scientists, developers, and AI enthusiasts at all levels to unlock the full potential of their ML solutions. This guide equips you to become a confident AI optimization expert.

Table of Contents
1. Optimizing a Machine Learning /Artificial Intelligence Solution
2. ML Problem Formulation: Setting the Right Objective
3. Data Collection and Pre-processing
4. Model Evaluation and Debugging
5. Imbalanced Machine Learning
6. Hyper-parameter Tuning
7. Parameter Optimization Algorithms
8. Optimizing Deep Learning Models
9. Optimizing Image Models
10. Optimizing Natural Language Processing Models
11. Transfer Learning

Wybrane bestsellery

O autorze książki

Mirza Rahim Baig is an avid problem solver who uses deep learning and artificial intelligence to solve complex business problems. He has more than a decade of experience in creating value from data, harnessing the power of the latest in machine learning and AI with proficiency in using unstructured and structured data across areas like marketing, customer experience, catalog, supply chain, and other eCommerce sub-domains. Rahim is also a teacher - designing, creating, teaching data science for various learning platforms. He loves making the complex easy to understand. He is also the co-author of The Deep Learning Workshop, a hands-on guide to start your deep learning journey and build your own next-generation deep learning models.

BPB Publications - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.