ODBIERZ TWÓJ BONUS :: »

Learn T-SQL Querying. A guide to developing efficient and elegant T-SQL code - Second Edition Pedro Lopes, Pam Lahoud

Język publikacji: 1
Learn T-SQL Querying. A guide to developing efficient and elegant T-SQL code - Second Edition Pedro Lopes, Pam Lahoud - okladka książki

Learn T-SQL Querying. A guide to developing efficient and elegant T-SQL code - Second Edition Pedro Lopes, Pam Lahoud - okladka książki

Autorzy:
Pedro Lopes, Pam Lahoud
Serie wydawnicze:
Learn
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
456
Dostępne formaty:
     PDF
     ePub

Ebook 29,90 zł najniższa cena z 30 dni

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

29,90 zł najniższa cena z 30 dni

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Prezent last minute w ebookpoint.pl
Data professionals seeking to excel in Transact-SQL for Microsoft SQL Server and Azure SQL Database often lack comprehensive resources. Learn T-SQL Querying second edition focuses on indexing queries and crafting elegant T-SQL code enabling data professionals gain mastery in modern SQL Server versions (2022) and Azure SQL Database. The book covers new topics like logical statement processing flow, data access using indexes, and best practices for tuning T-SQL queries.
Starting with query processing fundamentals, the book lays a foundation for writing performant T-SQL queries. You’ll explore the mechanics of the Query Optimizer and Query Execution Plans, learning to analyze execution plans for insights into current performance and scalability. Using dynamic management views (DMVs) and dynamic management functions (DMFs), you’ll build diagnostic queries. The book covers indexing and delves into SQL Server’s built-in tools to expedite resolution of T-SQL query performance and scalability issues. Hands-on examples will guide you to avoid UDF pitfalls and understand features like predicate SARGability, Query Store, and Query Tuning Assistant.
By the end of this book, you‘ll have developed the ability to identify query performance bottlenecks, recognize anti-patterns, and avoid pitfalls

Wybrane bestsellery

O autorach książki

Pedro Lopes is a Program Manager in the Database Systems group, based in Redmond, WA, USA. He has over 19 years of industry experience and has been with Microsoft for 9 years. He is currently responsible for program management of Database Engine features for in-market and vNext versions of SQL Server, with a special focus on the Relational Engine. He has extensive experience with query performance troubleshooting and is a regular speaker at numerous conferences such as SQLBits, PASS Summit, SQLIntersection, Microsoft Ignite, and Microsoft Build. He blogs about SQL on the SQL Server Team blog. He has authored several tools in the Tiger toolbox on GitHub: AdaptiveIndexDefrag maintenance solution, BPCheck, and usp_WhatsUp.
Pam Lahoud is a Program Manager in the Database Systems group, based in Redmond, WA, USA. She has been with Microsoft for 13 years and is currently responsible for program management of Database Engine features for in-market and vNext versions of SQL Server, with a special focus on the Storage Engine area. She is passionate about SQL Server performance and has focused on performance tuning and optimization, particularly from the developer's perspective, throughout her career. She is a SQL Server 2008 Microsoft Certified Master (MCM) with over 20 years of experience working with SQL Server.

Zobacz pozostałe książki z serii Learn

Packt Publishing - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.