ODBIERZ TWÓJ BONUS :: »

Learn T-SQL Querying. A guide to developing efficient and elegant T-SQL code Pedro Lopes, Pam Lahoud

Język publikacji: 1
Learn T-SQL Querying. A guide to developing efficient and elegant T-SQL code Pedro Lopes, Pam Lahoud - okladka książki

Learn T-SQL Querying. A guide to developing efficient and elegant T-SQL code Pedro Lopes, Pam Lahoud - okladka książki

Autorzy:
Pedro Lopes, Pam Lahoud
Serie wydawnicze:
Learn
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
484
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook 29,90 zł najniższa cena z 30 dni

169,00 zł (-10%)
152,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

29,90 zł najniższa cena z 30 dni

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Prezent last minute w ebookpoint.pl
Transact-SQL (T-SQL) is Microsoft's proprietary extension to the SQL language used with Microsoft SQL Server and Azure SQL Database. This book will be a usefu to learning the art of writing efficient T-SQL code in modern SQL Server versions as well as the Azure SQL Database.
The book will get you started with query processing fundamentals to help you write powerful, performant T-SQL queries. You will then focus on query execution plans and leverage them for troubleshooting. In later chapters, you will explain how to identify various T-SQL patterns and anti-patterns. This will help you analyze execution plans to gain insights into current performance, and determine whether or not a query is scalable. You will also build diagnostic queries using dynamic management views (DMVs) and dynamic management functions (DMFs) to address various challenges in T-SQL execution. Next, you will work with the built-in tools of SQL Server to shorten the time taken to address query performance and scalability issues. In the concluding chapters, this will guide you through implementing various features, such as Extended Events, Query Store, and Query Tuning Assistant, using hands-on examples.
By the end of the book, you will have developed the skills to determine query performance bottlenecks, avoid pitfalls, and discover the anti-patterns in use.

Wybrane bestsellery

O autorach książki

Pedro Lopes is a Program Manager in the Database Systems group, based in Redmond, WA, USA. He has over 19 years of industry experience and has been with Microsoft for 9 years. He is currently responsible for program management of Database Engine features for in-market and vNext versions of SQL Server, with a special focus on the Relational Engine. He has extensive experience with query performance troubleshooting and is a regular speaker at numerous conferences such as SQLBits, PASS Summit, SQLIntersection, Microsoft Ignite, and Microsoft Build. He blogs about SQL on the SQL Server Team blog. He has authored several tools in the Tiger toolbox on GitHub: AdaptiveIndexDefrag maintenance solution, BPCheck, and usp_WhatsUp.
Pam Lahoud is a Program Manager in the Database Systems group, based in Redmond, WA, USA. She has been with Microsoft for 13 years and is currently responsible for program management of Database Engine features for in-market and vNext versions of SQL Server, with a special focus on the Storage Engine area. She is passionate about SQL Server performance and has focused on performance tuning and optimization, particularly from the developer's perspective, throughout her career. She is a SQL Server 2008 Microsoft Certified Master (MCM) with over 20 years of experience working with SQL Server.

Zobacz pozostałe książki z serii Learn

Packt Publishing - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
152,10 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.