ODBIERZ TWÓJ BONUS :: »

Practicing Trustworthy Machine Learning

Język publikacji: 1
Practicing Trustworthy Machine Learning Yada Pruksachatkun, Matthew Mcateer, Subho Majumdar - okladka książki

Practicing Trustworthy Machine Learning Yada Pruksachatkun, Matthew Mcateer, Subho Majumdar - okladka książki

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
302
Dostępne formaty:
     ePub
     Mobi

Ebook 245,65 zł najniższa cena z 30 dni

299,00 zł (-15%)
254,15 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

245,65 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable.

Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world.

You'll learn:

  • Methods to explain ML models and their outputs to stakeholders
  • How to recognize and fix fairness concerns and privacy leaks in an ML pipeline
  • How to develop ML systems that are robust and secure against malicious attacks
  • Important systemic considerations, like how to manage trust debt and which ML obstacles require human intervention

Wybrane bestsellery

O'Reilly Media - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
254,15 zł
Dodaj do koszyka
Sposób płatności