Learn Data Science from Scratch Pratheerth Padman
- Autor:
- Pratheerth Padman
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 416
- Dostępne formaty:
-
ePubMobi
Czytaj fragment
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Learn Data Science from Scratch
Turn raw data into meaningful solutions
Key Features
Complete guide to master data science basics.
Practical and hands-on examples in ML, deep learning, and NLP.
Drive innovation and improve decision making through the power of data. Description
Learn Data Science from Scratch equips you with the essential tools and techniques, from Python libraries to machine learning algorithms, to tackle real-world problems and make informed decisions.
This book provides a thorough exploration of essential data science concepts, tools, and techniques. Starting with the fundamentals of data science, you will progress through data collection, web scraping, data exploration and visualization, and data cleaning and pre-processing. You will build the required foundation in statistics and probability before diving into machine learning algorithms, deep learning, natural language processing, recommender systems, and data storage systems. With hands-on examples and practical advice, each chapter offers valuable insights and key takeaways, empowering you to master the art of data-driven decision making.
By the end of this book, you will be well-equipped with the essential skills and knowledge to navigate the exciting world of data science. You will be able to collect, analyze, and interpret data, build and evaluate machine learning models, and effectively communicate your findings, making you a valuable asset in any data-driven environment. What you will learn
Master key data science tools like Python, NumPy, Pandas, and more.
Build a strong foundation in statistics and probability for data analysis.
Learn and apply machine learning, from regression to deep learning.
Expertise in NLP and recommender systems for advanced analytics.
End-to-end data project from data collection to model deployment, with planning and execution. Who this book is for
This book is ideal for beginners with a basic understanding of programming, particularly in Python, and a foundational knowledge of mathematics. It is well-suited for aspiring data scientists and analysts. Table of Contents
1. Unraveling the Data Science Universe: An Introduction
2. Essential Python Libraries and Tools for Data Science
3. Statistics and Probability Essentials for Data Science
4. Data Mining Expedition: Web Scraping and Data Collection Techniques
5. Painting with Data: Exploration and Visualization
6. Data Alchemy: Cleaning and Preprocessing Raw Data
7. Machine Learning Magic: An Introduction to Predictive Modeling
8. Exploring Regression: Linear, Logistic, and Advanced Methods
9. Unveiling Patterns with k-Nearest Neighbors and Nave Bayes
10. Exploring Tree-Based Models: Decision Trees to Gradient Boosting
11. Support Vector Machines: Simplifying Complexity
12. Dimensionality Reduction: From PCA to Advanced Methods
13. Unlocking Unsupervised Learning
14. The Essence of Neural Networks and Deep Learning
15. Word Play: Text Analytics and Natural Language Processing
16. Crafting Recommender Systems
17. Data Storage Mastery: Databases and Efficient Data Management
18. Data Science in Action: A Comprehensive End-to-end Project
Complete guide to master data science basics.
Practical and hands-on examples in ML, deep learning, and NLP.
Drive innovation and improve decision making through the power of data. Description
Learn Data Science from Scratch equips you with the essential tools and techniques, from Python libraries to machine learning algorithms, to tackle real-world problems and make informed decisions.
This book provides a thorough exploration of essential data science concepts, tools, and techniques. Starting with the fundamentals of data science, you will progress through data collection, web scraping, data exploration and visualization, and data cleaning and pre-processing. You will build the required foundation in statistics and probability before diving into machine learning algorithms, deep learning, natural language processing, recommender systems, and data storage systems. With hands-on examples and practical advice, each chapter offers valuable insights and key takeaways, empowering you to master the art of data-driven decision making.
By the end of this book, you will be well-equipped with the essential skills and knowledge to navigate the exciting world of data science. You will be able to collect, analyze, and interpret data, build and evaluate machine learning models, and effectively communicate your findings, making you a valuable asset in any data-driven environment. What you will learn
Master key data science tools like Python, NumPy, Pandas, and more.
Build a strong foundation in statistics and probability for data analysis.
Learn and apply machine learning, from regression to deep learning.
Expertise in NLP and recommender systems for advanced analytics.
End-to-end data project from data collection to model deployment, with planning and execution. Who this book is for
This book is ideal for beginners with a basic understanding of programming, particularly in Python, and a foundational knowledge of mathematics. It is well-suited for aspiring data scientists and analysts. Table of Contents
1. Unraveling the Data Science Universe: An Introduction
2. Essential Python Libraries and Tools for Data Science
3. Statistics and Probability Essentials for Data Science
4. Data Mining Expedition: Web Scraping and Data Collection Techniques
5. Painting with Data: Exploration and Visualization
6. Data Alchemy: Cleaning and Preprocessing Raw Data
7. Machine Learning Magic: An Introduction to Predictive Modeling
8. Exploring Regression: Linear, Logistic, and Advanced Methods
9. Unveiling Patterns with k-Nearest Neighbors and Nave Bayes
10. Exploring Tree-Based Models: Decision Trees to Gradient Boosting
11. Support Vector Machines: Simplifying Complexity
12. Dimensionality Reduction: From PCA to Advanced Methods
13. Unlocking Unsupervised Learning
14. The Essence of Neural Networks and Deep Learning
15. Word Play: Text Analytics and Natural Language Processing
16. Crafting Recommender Systems
17. Data Storage Mastery: Databases and Efficient Data Management
18. Data Science in Action: A Comprehensive End-to-end Project
Wybrane bestsellery
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Oceny i opinie klientów: Learn Data Science from Scratch Pratheerth Padman (0) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.