Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III
- Autor:
- Yuxi (Hayden) Liu
- Wydawnictwo:
- Helion
- Wydawnictwo:
- Helion
- Ocena:
- 3.0/6 Opinie: 2
- Stron:
- 424
- Druk:
- oprawa miękka
- Dostępne formaty:
-
PDFePubMobi
Opis
książki
:
Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III
Systemy oparte na uczeniu maszynowym są coraz bardziej wyrafinowane. Spośród wielu narzędzi służących do implementacji algorytmów uczenia maszynowego najpopularniejszy okazał się Python wraz z jego bibliotekami. Znajomość tych narzędzi umożliwia sprawne tworzenie systemów uczących się, jednak uzyskanie spektakularnych wyników wymaga doświadczenia i wprawy. Konieczne są więc ćwiczenia i praktyka w samodzielnym rozwiązywaniu problemów.
To trzecie wydanie popularnego podręcznika, który ułatwi Ci zdobycie praktycznej wiedzy o uczeniu maszynowym w Pythonie. Zapoznasz się z różnymi technikami implementacji algorytmów uczenia maszynowego. Przeanalizujesz rzeczywiste przykłady techniki eksploracyjnej analizy danych, inżynierii cech, klasyfikacji danych, regresji, klastrowania i przetwarzania języka naturalnego. To wydanie uzupełniono o najnowsze zagadnienia ważne dla biznesu, takie jak tworzenie systemu rekomendacji, rozpoznawanie twarzy, prognozowanie cen akcji, klasyfikowanie zdjęć, prognozowanie sekwencji danych i zastosowanie uczenia przez wzmacnianie w podejmowaniu decyzji. Dzięki książce poznasz omawiane zagadnienia od strony praktycznej i zdobędziesz wiedzę potrzebną do skutecznego rozwiązywania problemów z systemami uczącymi się.
W książce między innymi:
- gruntowne podstawy uczenia maszynowego i nauki o danych
- techniki eksploracji i analizy danych za pomocą kodu Pythona
- trenowanie modeli za pomocą Apache Spark
- przetwarzanie języka naturalnego przy użyciu bibliotek Pythona
- praktyczne wdrażanie modeli i algorytmów uczenia maszynowego
- korzystanie z bibliotek Pythona: TensorFlow 2, PyTorch i scikit-learn
Wypróbuj najlepsze praktyki uczenia maszynowego z Pythonem!
Trzecie wydanie książki Python. Uczenie maszynowe i projektowanie inteligentnych systemów za pomocą TensorFlow 2, PyTorch i scikit-learn jest wyczerpującym wprowadzeniem do świata uczenia maszynowego.
W sześciu nowych rozdziałach zostały opisane takie zagadnienia, jak tworzenie systemu rekomendacji filmów na bazie naiwnego klasyfikatora Bayesa, rozpoznawanie twarzy przy użyciu maszyny wektorów nośnych, prognozowanie cen akcji za pomocą algorytmów regresji, kategoryzacja zdjęć odzieży przy użyciu konwolucyjnej sieci neuronowej, prognozowanie sekwencji danych przy użyciu rekurencyjnej sieci neuronowej oraz podejmowanie decyzji w skomplikowanych warunkach z wykorzystaniem uczenia przez wzmacnianie.
Ponadto książka została istotnie zaktualizowana i dostosowana do najnowszych wymagań branżowych. Zawiera wiele praktycznych informacji o podstawach programowania uczenia maszynowego w Pythonie. Autor wykorzystując swoją wiedzę demonstruje implementacje algorytmów zarówno od podstaw, jak i za pomocą bibliotek.
W każdym rozdziale są opisane rzeczywiste zastosowania uczenia maszynowego. Dzięki praktycznym przykładom poznasz wykorzystania technik uczenia w takich obszarach, jak eksploracyjna analiza danych, inżynieria cech, klasyfikacja, regresja, klastrowanie i przetwarzanie języka naturalnego.
Po lekturze tej książki będziesz posiadał szeroki wgląd w ekosystem uczenia maszynowego i znał dobre praktyki rozwiązywania różnych problemów.
Dzięki tej książce:
- poznasz ważne pojęcia uczenia maszynowego i nauki o danych,
- nauczysz się eksplorować i analizować dane za pomocą języka Python,
- za pomocą platformy Apache Spark przetrenujesz modele na danych o różnych stopniach złożoności,
- dogłębnie poznasz analizę tekstu i przetwarzanie języka naturalnego przy użyciu bibliotek Pythona, takich jak NLTK i Gensim,
- wybierzesz i zbudujesz model uczenia maszynowego, a następnie ocenisz i zoptymalizujesz jego skuteczność,
- zaimplementujesz algorytmy uczenia maszynowego od podstaw, jak również przy użyciu bibliotek Pythona TensorFlow 2, PyTorch i scikit-learn.
Wybrane bestsellery
-
Nowość Promocja
Sztuczna inteligencja stale się rozwija. Właściwie codziennie słyszymy o jej rosnących możliwościach, nowych osiągnięciach i przyszłości, jaką nam przyniesie. Jednak w tej książce skupiamy się nie na przyszłości, a na teraźniejszości i praktycznym obliczu AI - na usługach, które świadczy już dziś. Większość najciekawszych zastosowań sztucznej inteligencji bazuje na ML (uczenie maszynowe, ang. machine learning), NLP (przetwarzanie języka naturalnego, ang. natural language processing) i architekturze RAG (ang. retrieval augmented generation) zwiększającej możliwości tzw. dużych modeli językowych (LLM, ang. large language model). Stanowią one podwaliny budowy systemów AI, bez których te systemy często wcale nie mogłyby powstać.- PDF + ePub + Mobi
- Druk 39 pkt
(37,89 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Odkryj potęgę tworzenia aplikacji webowych z najpopularniejszym językiem programowania ostatnich lat! Ta obszerna, licząca ponad 500 stron publikacja to prawdziwa skarbnica wiedzy dla każdego, kto pragnie zgłębić tajniki projektowania nowoczesnych rozwiązań internetowych w Pythonie. Od fundamentów po zaawansowane techniki - ta książka przeprowadzi
- PDF + ePub + Mobi 34 pkt
-
Nowość Promocja
Przetwarzanie obrazów to dynamicznie rozwijająca się dziedzina, która znajduje zastosowanie w licznych branżach, takich jak medycyna, motoryzacja, przemysł rozrywkowy, bezpieczeństwo, rolnictwo czy marketing. Umożliwia automatyczne rozpoznawanie obiektów, analizę obrazów medycznych i tworzenie interaktywnych aplikacji korzystających ze sztucznej inteligencji. Warto się zagłębić w techniki przetwarzania obrazów, które stały się dostępniejsze i skuteczniejsze niż kiedykolwiek wcześniej dzięki lepszemu wykorzystaniu mocy obliczeniowej niezbędnej do procesowania sieci konwolucyjnych (CNN) i algorytmów YOLO. Ponadto modele generatywne, jak DALL-E czy Midjourney, oferują możliwości generowania obrazów na potrzeby trenowania modeli AI, co pozwala zwiększać różnorodność i wielkość puli danych (ang. data augmentation). Powszechnym narzędziem w segmencie computer vision jest biblioteka OpenCV. Jest używana do analizy obrazów, rozpoznawania obiektów, detekcji twarzy, wykrywania ruchu czy segmentacji obrazów. OpenCV oferuje dostęp do szerokiego zakresu narzędzi i algorytmów, a dobre opanowanie biblioteki otwiera drzwi do ciekawych projektów związanych z widzeniem komputerowym. Umiejętność przetwarzania obrazów jest niezwykle ceniona na rynku pracy – specjaliści mogą liczyć na atrakcyjne stanowiska i różnorodne wyzwania technologiczne.- Videokurs 64 pkt
(34,65 zł najniższa cena z 30 dni)
64.35 zł
99.00 zł (-35%) -
Nowość Promocja
Język programowania ogólnego przeznaczenia Python należy obecnie do najpopularniejszych na świecie. Skąd się bierze jego fenomen? Niewątpliwie kluczowe znaczenie ma tu bardzo czytelna składnia, mocno zbliżona do składni języka naturalnego. Czyni to Pythona dość łatwym do opanowania, także dla początkujących. Osoby bardziej doświadczone doceniają go za wszechstronność. Pythona można używać w różnych dziedzinach, takich jak analiza danych, sztuczna inteligencja, tworzenie stron internetowych, automatyka i automatyzacja, pisanie aplikacji mobilnych i wiele innych. Dodajmy do tego rozbudowany pakiet bibliotek standardowych i oto mamy (niemal) idealny język programowania.- PDF + ePub + Mobi
- Druk 29 pkt
(27,90 zł najniższa cena z 30 dni)
29.49 zł
59.00 zł (-50%) -
Nowość Promocja
Tę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się przede wszystkim na praktycznym aspekcie tych technik. Znalazło się tu również omówienie nowoczesnych rozwiązań, takich jak wykorzystanie uczenia maszynowego do szacowania heterogenicznych efektów. Każda metoda została zilustrowana opisem zastosowania w branży technologicznej.- PDF + ePub + Mobi
- Druk 37 pkt
(35,90 zł najniższa cena z 30 dni)
37.45 zł
74.90 zł (-50%) -
Nowość Promocja
Flask jest jednym z mikroframeworków napisanych w języku Python. Przedrostek „mikro-” oznacza tyle, że framework ten nie wymaga określonych narzędzi ani bibliotek. Bazuje na użytkowych rozszerzeniach i należy do najpopularniejszych tego typu platform Pythona. Wiele firm programistycznych i samodzielnych deweloperów używa go do tworzenia nowoczesnych, skalowalnych aplikacji webowych – są wśród nich między innymi Pinterest czy LinkedIn. Elastyczność, lekkość i prostota użycia czyni z Flaska idealny wybór zarówno dla początkujących, jak i dla zaawansowanych programistów. Z jednej strony bowiem można szybko tworzyć w nim prototypy, z drugiej – Flask nadaje się idealnie do kreowania dużych, skomplikowanych aplikacji.- Videokurs 83 pkt
(39,90 zł najniższa cena z 30 dni)
83.39 zł
139.00 zł (-40%) -
Nowość Promocja
Tę książkę docenią średnio zaawansowani użytkownicy Pythona, którzy tworzą aplikacje korzystające z osiągnięć nauki o danych. Znajdziesz w niej omówienie możliwości języka, wbudowanych struktur danych Pythona, jak również takich bibliotek jak NumPy, pandas, scikit-learn i matplotlib. Nauczysz się wczytywania danych w różnych formatach, porządkowania, grupowania i agregowana zbiorów danych, a także tworzenia wykresów i map. Poszczególne zagadnienia zostały zilustrowane praktycznymi przykładami tworzenia rzeczywistych aplikacji, takich jak system obsługi taksówek z wykorzystaniem danych lokalizacyjnych, analiza reguł asocjacyjnych dla danych transakcji czy też uczenie maszynowe modelu przewidującego zmiany kursów akcji. Każdy rozdział zawiera interesujące ćwiczenia, które pozwolą Ci nabrać biegłości w stosowaniu opisanych tu technik.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
Dzięki tej książce dowiesz się, jak pozyskiwać, analizować i wizualizować dane, a potem używać ich do rozwiązywania problemów biznesowych. Wystarczy, że znasz podstawy Pythona i matematyki na poziomie liceum, aby zacząć stosować naukę o danych w codziennej pracy. Znajdziesz tu szereg praktycznych i zrozumiałych przykładów: od usprawniania działalności wypożyczalni rowerów, poprzez wyodrębnianie danych z witryn internetowych, po budowę systemów rekomendacyjnych. Poznasz rozwiązania oparte na danych, przydatne w podejmowaniu decyzji biznesowych. Nauczysz się korzystać z eksploracyjnej analizy danych, przeprowadzać testy A/B i klasyfikację binarną, a także używać algorytmów uczenia maszynowego.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
Ta książka wyjaśni Ci rolę matematyki w tworzeniu, renderowaniu i zmienianiu wirtualnych środowisk 3D, a ponadto pozwoli odkryć tajemnice najpopularniejszych dzisiaj silników gier. Za sprawą licznych praktycznych ćwiczeń zorientujesz się, co się kryje za rysowaniem linii i kształtów graficznych, stosowaniem wektorów i wierzchołków, budowaniem i renderowaniem siatek, jak również przekształcaniem wierzchołków. Nauczysz się używać kodu Pythona, a także bibliotek Pygame i PyOpenGL do budowy własnych silników. Dowiesz się też, jak tworzyć przydatne API i korzystać z nich podczas pisania własnych aplikacji.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Promocja
To trzecie, zaktualizowane i uzupełnione wydanie bestsellerowego podręcznika programowania w Pythonie. Naukę rozpoczniesz od podstawowych koncepcji programowania. Poznasz takie pojęcia jak zmienne, listy, klasy i pętle, a następnie utrwalisz je dzięki praktycznym ćwiczeniom. Dowiesz się, jak zapewnić interaktywność programom, i nauczysz się poprawnego testowania kodu przed dodaniem go do projektu. W kolejnych rozdziałach przystąpisz do praktycznej realizacji trzech projektów: gry zręcznościowej inspirowanej klasyczną Space Invaders, wizualizacji danych za pomocą dostępnych dla Pythona niezwykle użytecznych bibliotek i prostej aplikacji internetowej, gotowej do wdrożenia na serwerze WWW i opublikowania w internecie.- PDF + ePub + Mobi
- Druk 59 pkt
(9,90 zł najniższa cena z 30 dni)
59.50 zł
119.00 zł (-50%)
O autorze książki
Yuxi (Hayden) Liu rozwija modele uczenia maszynowego w Google. Wcześniej pracował naukowo nad zastosowaniami uczenia maszynowego w takich dziedzinach jak reklama internetowa i cyberbezpieczeństwo. Jest entuzjastą edukacji i autorem wielu książek o uczeniu maszynowym. Pierwsze wydanie tego podręcznika zajmowało wiodącą pozycję w rankingu Amazona w latach 2017 i 2018.
Yuxi (Hayden) Liu - pozostałe książki
-
Promocja
Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms.- PDF + ePub + Mobi 98 pkt
(29,90 zł najniższa cena z 30 dni)
98.10 zł
109.00 zł (-10%) -
Promocja
This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library.- PDF + ePub + Mobi 107 pkt
(29,90 zł najniższa cena z 30 dni)
107.10 zł
119.00 zł (-10%) -
Promocja
This book explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations to help you understand the concepts and ideas required to build efficient artificial intelligence systems, this book will help you construct deep models using popular frameworks and datasets.- PDF + ePub + Mobi 85 pkt
(29,90 zł najniższa cena z 30 dni)
85.49 zł
94.99 zł (-10%) -
Promocja
Python Machine Learning by Example covers in detail the most important concepts, techniques, algorithms, and libraries that every data scientist or machine learning practitioner needs to know. This example-enriched guide will make your learning journey easier and happier, enabling you to solve real-world data-driven problems.- PDF + ePub + Mobi 98 pkt
(29,90 zł najniższa cena z 30 dni)
98.10 zł
109.00 zł (-10%) -
Promocja
Data science and machine learning are some of the top buzzwords in the technical world today. A re-surging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, Python. Interesting and easy-to-follow examples will keep you glued till you learn what machine learning is and how to implement it.- PDF + ePub + Mobi 143 pkt
(29,90 zł najniższa cena z 30 dni)
143.10 zł
159.00 zł (-10%) -
Promocja
Develop your Python machine learning skills with the latest techniques. Dive into NLP transformers, multimodal vision models, and best practices. Explore neural networks, clustering, and GPT with hands-on examples in PyTorch and TensorFlow.- PDF + ePub 116 pkt
(29,90 zł najniższa cena z 30 dni)
116.10 zł
129.00 zł (-10%) -
Promocja
Fully updated with PyTorch and the latest additions to scikit-learn. Packed with clear explanations, visualizations, and working examples, the book covers essential machine learning techniques in depth, along with two cutting-edge machine learning techniques: transformers and graph neural networks.- PDF + ePub 143 pkt
Machine Learning with PyTorch and Scikit-Learn. Develop machine learning and deep learning models with Python
Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, Dmytro Dzhulgakov
(29,90 zł najniższa cena z 30 dni)
143.10 zł
159.00 zł (-10%) -
Promocja
This Learning Path is your step-by-step guide to building deep learning models using R's wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you'll gain the exact knowledge you need to get started with developing deep models using R.- PDF + ePub + Mobi 161 pkt
Deep Learning with R for Beginners. Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet
Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado
(29,90 zł najniższa cena z 30 dni)
161.10 zł
179.00 zł (-10%) -
Promocja
R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll see how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks and LSTMs—and also see how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.- PDF + ePub + Mobi 98 pkt
(29,90 zł najniższa cena z 30 dni)
98.10 zł
109.00 zł (-10%)
Zobacz pozostałe książki z serii
-
Promocja
Oto kompleksowe omówienie sposobów wdrażania najnowszych dostępnych środków zabezpieczających systemy linuksowe. Z książki dowiesz się, jak skonfigurować laboratorium do ćwiczeń praktycznych, tworzyć konta użytkowników z odpowiednimi poziomami uprawnień, chronić dane dzięki uprawnieniom i szyfrowaniu, a także skonfigurować zaporę sieciową przy użyciu najnowszych technologii. Nauczysz się też automatyzować takie czynności jak monitorowanie systemu za pomocą auditd i utwardzanie (hardening) konfiguracji jądra Linux. Poznasz również sposoby ochrony przed złośliwym oprogramowaniem i skanowania systemów pod kątem luk w zabezpieczeniach. Znajdziesz tu ponadto podpowiedź, jak używać Security Onion do skonfigurowania systemu wykrywania włamań.- PDF + ePub + Mobi
- Druk 64 pkt
(39,90 zł najniższa cena z 30 dni)
64.50 zł
129.00 zł (-50%) -
Promocja
Ta książka pomoże Ci w doskonaleniu umiejętności potrzebnych na każdym etapie dochodzenia cyfrowego, od zbierania dowodów, poprzez ich analizę, po tworzenie raportów. Dzięki wielu wskazówkom i praktycznym ćwiczeniom przyswoisz techniki analizy, ekstrakcji danych i raportowania przy użyciu zaawansowanych narzędzi. Poznasz różne systemy przechowywania plików i nauczysz się wyszukiwać urządzenia sieciowe za pomocą skanerów Nmap i Netdiscover. Zapoznasz się też ze sposobami utrzymywania integralności cyfrowego materiału dowodowego. Znajdziesz tu ponadto omówienie kilku bardziej zaawansowanych tematów, takich jak pozyskiwanie ulotnych danych z sieci, nośników pamięci i systemów operacyjnych.- PDF + ePub + Mobi
- Druk 49 pkt
(39,90 zł najniższa cena z 30 dni)
49.50 zł
99.00 zł (-50%) -
Promocja
Oto uzupełnione i zaktualizowane wydanie bestsellerowego przewodnika dla inżynierów sieci. Dzięki niemu przejdziesz trudną (ale ekscytującą!) drogę od tradycyjnej platformy do platformy sieciowej opartej na najlepszych praktykach programistycznych. Zaczniesz od zagadnień podstawowych, aby następnie zagłębić się w tajniki stosowania bibliotek Pexpect, Paramiko czy Netmiko do komunikacji z urządzeniami sieciowymi. W kolejnych rozdziałach znajdziesz solidny przegląd różnych narzędzi wraz ze sposobami ich użycia: Cisco NX-API, Meraki, Juniper PyEZ, Ansible, Scapy, PySNMP, Flask, Elastic Stack i wielu innych. Rozeznasz się również w kwestiach związanych z kontenerami Dockera, a także usługami sieciowymi chmur AWS i Azure. Lektura tej książki pozwoli Ci się w pełni przygotować na następną generację sieci!- PDF + ePub + Mobi
- Druk 64 pkt
(39,90 zł najniższa cena z 30 dni)
64.50 zł
129.00 zł (-50%) -
Promocja
Oto zaktualizowane wydanie bestsellerowego przewodnika dla architektów rozwiązań. Dzięki niemu dobrze poznasz wzorce projektowe wbudowane w chmurę, czyli model AWS Well-Architected Framework. Zaznajomisz się z sieciami w chmurze AWS z uwzględnieniem sieci brzegowych i tworzeniem hybrydowych połączeń sieciowych w jej obrębie. W tym wydaniu dodano rozdziały dotyczące metodyki CloudOps i takich technologii jak uczenie maszynowe czy łańcuch bloków. Poznasz również inne ważne zagadnienia, w tym przechowywanie danych w chmurze AWS, kontenery obsługiwane przez usługi ECS i EKS, wzorce „jeziora” danych (w tym usługę AWS Lake Formation), architekturę lakehouse i architekturę siatki danych. Ten przewodnik z pewnością ułatwi Ci zaprojektowanie systemu spełniającego wyśrubowane wymagania techniczne i branżowe.- PDF + ePub + Mobi
- Druk 69 pkt
AWS dla architektów rozwiązań. Tworzenie, skalowanie i migracja aplikacji do chmury Amazon Web Services. Wydanie II
Saurabh Shrivastava, Neelanjali Srivastav, Alberto Artasanchez, Imtiaz Sayed
(39,90 zł najniższa cena z 30 dni)
69.50 zł
139.00 zł (-50%) -
Promocja
Ten szczegółowy przewodnik pozwoli Ci na błyskawiczne zapoznanie się z .NET MAUI i sprawne rozpoczęcie pisania aplikacji za pomocą tej technologii. Zaprezentowano w nim filozofię działania .NET MAUI, jak również przebieg prac nad tworzeniem kompletnej aplikacji wieloplatformowej dla systemów: Android, iOS, macOS i Windows, na podstawie jednego wspólnego kodu bazowego. Podczas lektury zrozumiesz też cały cykl rozwoju oprogramowania, w tym zasady publikowania w sklepach z aplikacjami. Ciekawym elementem książki jest opis najnowszej technologii tworzenia frontendów — .NET MAUI Blazor.- PDF + ePub + Mobi
- Druk 39 pkt
(34,90 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Promocja
Ta książka szczególnie przyda się osobom, które rozpoczynają pracę z Angularem. Dzięki niej szybko zaczniesz tworzyć aplikacje z wykorzystaniem wiersza poleceń (CLI), pisać testy jednostkowe i używać stylów zgodnych ze standardem Material Design. Dowiesz się również, jak wdrażać aplikacje w środowisku produkcyjnym. W tym wydaniu zaprezentowano wiele nowych funkcjonalności i praktyk ułatwiających pracę twórcom frontendów. Dodano nowy rozdział poświęcony klasie Observable i bibliotece RxJS, a także rozszerzono zakres informacji o obsłudze błędów i debugowaniu w Angularze. Poszczególne zagadnienia zostały zilustrowane przykładami rzeczywistych rozwiązań, a prezentowany kod powstał zgodnie z najlepszymi praktykami programistycznymi.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Promocja
Oto praktyczny, przystępnie napisany przewodnik, który stanowi wprowadzenie do pracy z technologią Blazor. Opisuje możliwości modeli Server i WebAssembly, przedstawia także krok po kroku proces powstawania aplikacji internetowej. Dzięki temu płynnie przejdziesz do tworzenia projektów Blazor, nauczysz się składni języka Razor, będziesz też weryfikować zawartość formularzy i budować własne komponenty. W tym wydaniu omówiono również generatory kodu źródłowego i zasady przenoszenia komponentów witryn utworzonych w innych technologiach do platformy Blazor. W trakcie lektury dowiesz się, jak tworzyć uniwersalne aplikacje za pomocą wersji Blazor Hybrid wraz z platformą .NET MAUI.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
To książka przeznaczona dla profesjonalnych administratorów i użytkowników Linuksa. Dzięki niej szybciej zrozumiesz, w jakim stopniu dobre zarządzanie systemami na poziomie systemu operacyjnego może wynieść działanie infrastruktury biznesowej na zupełnie inny poziom. Znajdziesz tu najlepsze praktyki zarządzania systemami ― począwszy od wyboru optymalnej dystrybucji Linuksa, poprzez zaprojektowanie architektury systemu, skończywszy na strategiach zarządzania przeprowadzanymi w nim poprawkami i aktualizacjami. Sporo miejsca poświęcono różnym metodom automatyzacji części zadań administratora, a także schematom tworzenia kopii zapasowych i odzyskiwania danych po awarii. Zaproponowano również ciekawe podejście do rozwiązywania problemów, dzięki któremu można szybciej uzyskać satysfakcjonujące rozwiązanie i uniknąć poważniejszych szkód.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Promocja
Książka stanowi wprowadzenie do pracy z funkcjami SI dostępnymi w Power BI; jest skierowana do osób znających to środowisko. Dowiesz się z niej, w jaki sposób sztuczna inteligencja może być używana w Power BI i jakie funkcje są w nim domyślnie dostępne. Nauczysz się też eksplorować i przygotowywać dane do projektów SI. Pokazano tu, jak umieszczać dane z analizy tekstu i widzenia komputerowego w raportach Power BI, co ułatwia korzystanie z zewnętrznej bazy wiedzy. Omówiono również procesy tworzenia i wdrażania modeli AutoML wytrenowanych na platformie Azure ML, a także umieszczania ich w edytorze Power Query. Nie zabrakło kwestii związanych z prywatnością, bezstronnością i odpowiedzialnością w korzystaniu z SI.- PDF + ePub + Mobi
- Druk 39 pkt
(34,90 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Promocja
To drugie wydanie popularnego przewodnika dla śledczych. Dzięki niemu sprawnie przygotujesz się do pracy z narzędziami kryminalistycznymi i zapoznasz się ze stosowanymi w informatyce śledczej technikami. Nauczysz się pozyskiwać informacje o podejrzanych i zabezpieczać znajdujące się w sieci dane, które mogą się okazać istotne w wyjaśnieniu sprawy. Zdobędziesz także potrzebną wiedzę o topologiach sieciowych, urządzeniach i niektórych protokołach sieciowych. Bardzo ważnym elementem publikacji jest rozdział poświęcony zasadom tworzenia raportów kryminalistycznych. Cenne informacje i wskazówki zawarte w przewodniku pomogą Ci odnieść sukces w dochodzeniach korporacyjnych lub śledztwach w sprawach karnych.- PDF + ePub + Mobi
- Druk 39 pkt
(34,90 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%)
Ebooka "Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III" przeczytasz na:
-
czytnikach Inkbook, Kindle, Pocketbook, Onyx Boox i innych
-
systemach Windows, MacOS i innych
-
systemach Windows, Android, iOS, HarmonyOS
-
na dowolnych urządzeniach i aplikacjach obsługujących formaty: PDF, EPub, Mobi
Masz pytania? Zajrzyj do zakładki Pomoc »
Audiobooka "Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III" posłuchasz:
-
w aplikacji Ebookpoint na Android, iOS, HarmonyOs
-
na systemach Windows, MacOS i innych
-
na dowolonych urządzeniach i aplikacjach obsługujących format MP3 (pliki spakowane w ZIP)
Masz pytania? Zajrzyj do zakładki Pomoc »
Kurs Video "Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III" zobaczysz:
-
w aplikacjach Ebookpoint i Videopoint na Android, iOS, HarmonyOs
-
na systemach Windows, MacOS i innych z dostępem do najnowszej wersji Twojej przeglądarki internetowej
Szczegóły książki
- Tytuł oryginału:
- Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn, 3rd Edition
- Tłumaczenie:
- Andrzej Watrak
- ISBN Książki drukowanej:
- 978-83-283-8870-3, 9788328388703
- Data wydania książki drukowanej :
- 2022-06-28
- ISBN Ebooka:
- 978-83-283-8871-0, 9788328388710
- Data wydania ebooka :
- 2022-06-28 Data wydania ebooka często jest dniem wprowadzenia tytułu do sprzedaży i może nie być równoznaczna z datą wydania książki papierowej. Dodatkowe informacje możesz znaleźć w darmowym fragmencie. Jeśli masz wątpliwości skontaktuj się z nami sklep@ebookpoint.pl.
- Format:
- 165x235
- Numer z katalogu:
- 169868
- Rozmiar pliku Pdf:
- 8.5MB
- Rozmiar pliku ePub:
- 13.7MB
- Rozmiar pliku Mobi:
- 29.3MB
- Pobierz przykładowy rozdział PDF »
- Przykłady na ftp » 64.8MB
Spis treści książki
- Wprowadzenie do uczenia maszynowego
- Dlaczego uczenie maszynowe jest potrzebne?
- Różnice między uczeniem maszynowym a automatyką
- Zastosowania uczenia maszynowego
- Wstępne wymagania
- Trzy rodzaje uczenia maszynowego
- Istota uczenia maszynowego
- Uogólnianie danych
- Nadmierne i niedostateczne dopasowanie modelu oraz kompromis między obciążeniem a wariancją
- Zapobieganie nadmiernemu dopasowaniu poprzez weryfikację krzyżową
- Zapobieganie nadmiernemu dopasowaniu za pomocą regularyzacji
- Zapobieganie nadmiernemu dopasowaniu poprzez selekcję cech i redukcję wymiarowości
- Wstępne przetwarzanie danych i inżynieria cech
- Wstępne przetwarzanie i eksploracja danych
- Inżynieria cech
- Łączenie modeli
- Głosowanie i uśrednianie
- Agregacja bootstrap
- Wzmacnianie
- Składowanie
- Instalacja i konfiguracja oprogramowania
- Przygotowanie Pythona i środowiska pracy
- Instalacja najważniejszych pakietów Pythona
- Wprowadzenie do pakietu TensorFlow 2
- Podsumowanie
- Ćwiczenia
- Pierwsze kroki z klasyfikacją
- Klasyfikacja binarna
- Klasyfikacja wieloklasowa
- Klasyfikacja wieloetykietowa
- Naiwny klasyfikator Bayesa
- Twierdzenie Bayesa w przykładach
- Mechanizm naiwnego klasyfikatora Bayesa
- Implementacja naiwnego klasyfikatora Bayesa
- Implementacja od podstaw
- Implementacja z wykorzystaniem pakietu scikit-learn
- Budowanie systemu rekomendacyjnego na bazie klasyfikatora Bayesa
- Ocena jakości klasyfikacji
- Strojenie modeli poprzez weryfikację krzyżową
- Podsumowanie
- Ćwiczenia
- Bibliografia
- Określanie granic klas za pomocą maszyny wektorów nośnych
- Scenariusz 1. Określenie hiperpłaszczyzny rozdzielającej
- Scenariusz 2. Określenie optymalnej hiperpłaszczyzny rozdzielającej
- Scenariusz 3. Przetwarzanie punktów odstających
- Implementacja maszyny wektorów nośnych
- Scenariusz 4. Więcej niż dwie klasy
- Scenariusz 5. Rozwiązywanie nierozdzielnego liniowo problemu za pomocą jądra
- Wybór między jądrem liniowym a radialną funkcją bazową
- Klasyfikowanie zdjęć twarzy za pomocą maszyny wektorów nośnych
- Badanie zbioru zdjęć twarzy
- Tworzenie klasyfikatora obrazów opartego na maszynie wektorów nośnych
- Zwiększanie skuteczności klasyfikatora obrazów za pomocą analizy głównych składowych
- Klasyfikacja stanu płodu w kardiotokografii
- Podsumowanie
- Ćwiczenia
- Wprowadzenie do prognozowania kliknięć reklam
- Wprowadzenie do dwóch typów danych: liczbowych i kategorialnych
- Badanie drzewa decyzyjnego od korzeni do liści
- Budowanie drzewa decyzyjnego
- Wskaźniki jakości podziału zbioru
- Implementacja drzewa decyzyjnego od podstaw
- Implementacja drzewa decyzyjnego za pomocą biblioteki scikit-learn
- Prognozowanie kliknięć reklam za pomocą drzewa decyzyjnego
- Gromadzenie drzew decyzyjnych: las losowy
- Gromadzenie drzew decyzyjnych: drzewa ze wzmocnieniem gradientowym
- Podsumowanie
- Ćwiczenia
- Klasyfikowanie danych z wykorzystaniem regresji logistycznej
- Wprowadzenie do funkcji logistycznej
- Przejście od funkcji logistycznej do regresji logistycznej
- Trening modelu opartego na regresji logistycznej
- Trening modelu opartego na regresji logistycznej z gradientem prostym
- Prognozowanie kliknięć reklam z wykorzystaniem regresji logistycznej z gradientem prostym
- Trening modelu opartego na regresji logistycznej ze stochastycznym gradientem prostym
- Trening modelu opartego na regresji logistycznej z regularyzacją
- Selekcja cech w regularyzacji L1
- Trening modelu na dużym zbiorze danych z uczeniem online
- Klasyfikacja wieloklasowa
- Implementacja regresji logistycznej za pomocą pakietu TensorFlow
- Selekcja cech z wykorzystaniem lasu losowego
- Podsumowanie
- Ćwiczenia
- Podstawy Apache Spark
- Komponenty
- Instalacja
- Uruchamianie i wdrażanie programów
- Programowanie z wykorzystywaniem modułu PySpark
- Trenowanie modelu na bardzo dużych zbiorach danych za pomocą narzędzia Apache Spark
- Załadowanie danych o kliknięciach reklam
- Podzielenie danych i umieszczenie ich w pamięci
- Zakodowanie "1 z n" cech kategorialnych
- Trening i testy modelu regresji logistycznej
- Inżynieria cech i wartości kategorialnych przy użyciu narzędzia Apache Spark
- Mieszanie cech kategorialnych
- Interakcja cech, czyli łączenie zmiennych
- Podsumowanie
- Ćwiczenia
- Krótkie wprowadzenie do giełdy i cen akcji
- Co to jest regresja?
- Pozyskiwanie cen akcji
- Pierwsze kroki z inżynierią cech
- Pozyskiwanie danych i generowanie cech
- Szacowanie za pomocą regresji liniowej
- Jak działa regresja liniowa?
- Implementacja regresji liniowej od podstaw
- Implementacja regresji liniowej z wykorzystaniem pakietu scikit-learn
- Implementacja regresji liniowej z wykorzystaniem pakietu TensorFlow
- Prognozowanie za pomocą regresyjnego drzewa decyzyjnego
- Przejście od drzewa klasyfikacyjnego do regresyjnego
- Implementacja regresyjnego drzewa decyzyjnego
- Implementacja lasu regresyjnego
- Prognozowanie za pomocą regresji wektorów nośnych
- Implementacja regresji wektorów nośnych
- Ocena jakości regresji
- Prognozowanie cen akcji za pomocą trzech algorytmów regresji
- Podsumowanie
- Ćwiczenia
- Demistyfikacja sieci neuronowych
- Pierwsze kroki z jednowarstwową siecią neuronową
- Funkcje aktywacji
- Propagacja wstecz
- Wprowadzanie kolejnych warstw do sieci neuronowej i uczenie głębokie
- Tworzenie sieci neuronowej
- Implementacja sieci neuronowej od podstaw
- Implementacja sieci neuronowej przy użyciu pakietu scikit-learn
- Implementacja sieci neuronowej przy użyciu pakietu TensorFlow
- Dobór właściwej funkcji aktywacji
- Zapobieganie nadmiernemu dopasowaniu sieci
- Dropout
- Wczesne zakończenie treningu
- Prognozowanie cen akcji za pomocą sieci neuronowej
- Trening prostej sieci neuronowej
- Dostrojenie parametrów sieci neuronowej
- Podsumowanie
- Ćwiczenie
- Jak komputery rozumieją ludzi, czyli przetwarzanie języka naturalnego
- Czym jest przetwarzanie języka naturalnego?
- Historia przetwarzania języka naturalnego
- Zastosowania przetwarzania języka naturalnego
- Przegląd bibliotek Pythona i podstawy przetwarzania języka naturalnego
- Instalacja najważniejszych bibliotek
- Korpusy
- Tokenizacja
- Oznaczanie części mowy
- Rozpoznawanie jednostek nazwanych
- Stemming i lematyzacja
- Modelowanie semantyczne i tematyczne
- Pozyskiwanie danych z grup dyskusyjnych
- Badanie danych z grup dyskusyjnych
- Przetwarzanie cech danych tekstowych
- Zliczanie wystąpień wszystkich tokenów
- Wstępne przetwarzanie tekstu
- Usuwanie stop-słów
- Upraszczanie odmian
- Wizualizacja danych tekstowych z wykorzystaniem techniki t-SNE
- Co to jest redukcja wymiarowości?
- Redukcja wymiarowości przy użyciu techniki t-SNE
- Podsumowanie
- Ćwiczenia
- Nauka bez wskazówek, czyli uczenie nienadzorowane
- Klastrowanie grup dyskusyjnych metodą k-średnich
- Jak działa klastrowanie metodą k-średnich?
- Implementacja klastrowania metodą k-średnich od podstaw
- Implementacja klastrowania metodą k-średnich z wykorzystaniem pakietu scikit-learn
- Dobór wartości k
- Klastrowanie danych z grup dyskusyjnych metodą k-średnich
- Odkrywanie ukrytych tematów grup dyskusyjnych
- Modelowanie tematyczne z wykorzystaniem nieujemnej faktoryzacji macierzy
- Modelowanie tematyczne z wykorzystaniem ukrytej alokacji Dirichleta
- Podsumowanie
- Ćwiczenia
- Proces rozwiązywania problemów uczenia maszynowego
- Dobre praktyki przygotowywania danych
- Dobra praktyka nr 1. Dokładne poznanie celu projektu
- Dobra praktyka nr 2. Zbieranie wszystkich istotnych pól
- Dobra praktyka nr 3. Ujednolicenie danych
- Dobra praktyka nr 4. Opracowanie niekompletnych danych
- Dobra praktyka nr 5. Przechowywanie dużych ilości danych
- Dobre praktyki tworzenia zbioru treningowego
- Dobra praktyka nr 6. Oznaczanie cech kategorialnych liczbami
- Dobra praktyka nr 7. Rozważenie kodowania cech kategorialnych
- Dobra praktyka nr 8. Rozważenie selekcji cech i wybór odpowiedniej metody
- Dobra praktyka nr 9. Rozważenie redukcji wymiarowości i wybór odpowiedniej metody
- Dobra praktyka nr 10. Rozważenie normalizacji cech
- Dobra praktyka nr 11. Inżynieria cech na bazie wiedzy eksperckiej
- Dobra praktyka nr 12. Inżynieria cech bez wiedzy eksperckiej
- Dobra praktyka nr 13. Dokumentowanie procesu tworzenia cech
- Dobra praktyka nr 14. Wyodrębnianie cech z danych tekstowych
- Dobre praktyki trenowania, oceniania i wybierania modelu
- Dobra praktyka nr 15. Wybór odpowiedniego algorytmu początkowego
- Dobra praktyka nr 16. Zapobieganie nadmiernemu dopasowaniu
- Dobra praktyka nr 17. Diagnozowanie nadmiernego i niedostatecznego dopasowania
- Dobra praktyka nr 18. Modelowanie dużych zbiorów danych
- Dobre praktyki wdrażania i monitorowania modelu
- Dobra praktyka nr 19. Zapisywanie, ładowanie i wielokrotne stosowanie modelu
- Dobra praktyka nr 20. Monitorowanie skuteczności modelu
- Dobra praktyka nr 21. Regularne aktualizowanie modelu
- Podsumowanie
- Ćwiczenia
- Bloki konstrukcyjne konwolucyjnej sieci neuronowej
- Warstwa konwolucyjna
- Warstwa nieliniowa
- Warstwa redukująca
- Budowanie konwolucyjnej sieci neuronowej na potrzeby klasyfikacji
- Badanie zbioru zdjęć odzieży
- Klasyfikowanie zdjęć odzieży za pomocą konwolucyjnej sieci neuronowej
- Tworzenie sieci
- Trening sieci
- Wizualizacja filtrów konwolucyjnych
- Wzmacnianie konwolucyjnej sieci neuronowej poprzez uzupełnianie danych
- Odwracanie obrazów w poziomie i pionie
- Obracanie obrazów
- Przesuwanie obrazów
- Usprawnianie klasyfikatora obrazów poprzez uzupełnianie danych
- Podsumowanie
- Ćwiczenia
- Wprowadzenie do uczenia sekwencyjnego
- Architektura rekurencyjnej sieci neuronowej na przykładzie
- Mechanizm rekurencyjny
- Sieć typu "wiele do jednego"
- Sieć typu "jedno do wielu"
- Sieć synchroniczna typu "wiele do wielu"
- Sieć niesynchroniczna typu "wiele do wielu"
- Trening rekurencyjnej sieci neuronowej
- Długoterminowe zależności i sieć LSTM
- Analiza recenzji filmowych za pomocą sieci neuronowej
- Analiza i wstępne przetworzenie recenzji
- Zbudowanie prostej sieci LSTM
- Poprawa skuteczności poprzez wprowadzenie dodatkowych warstw
- Pisanie nowej powieści "Wojna i pokój" za pomocą rekurencyjnej sieci neuronowej
- Pozyskanie i analiza danych treningowych
- Utworzenie zbioru treningowego dla generatora tekstu
- Utworzenie generatora tekstu
- Trening generatora tekstu
- Zaawansowana analiza języka przy użyciu modelu Transformer
- Architektura modelu
- Samouwaga
- Podsumowanie
- Ćwiczenia
- Przygotowanie środowiska do uczenia przez wzmacnianie
- Instalacja biblioteki PyTorch
- Instalacja narzędzi OpenAI Gym
- Wprowadzenie do uczenia przez wzmacnianie z przykładami
- Komponenty uczenia przez wzmacnianie
- Sumaryczna nagroda
- Algorytmy uczenia przez wzmacnianie
- Problem FrozenLake i programowanie dynamiczne
- Utworzenie środowiska FrozenLake
- Rozwiązanie problemu przy użyciu algorytmu iteracji wartości
- Rozwiązanie problemu przy użyciu algorytmu iteracji polityki
- Metoda Monte Carlo uczenia przez wzmacnianie
- Utworzenie środowiska Blackjack
- Ocenianie polityki w metodzie Monte Carlo
- Sterowanie Monte Carlo z polityką
- Problem taksówkarza i algorytm Q-uczenia
- Utworzenie środowiska Taxi
- Implementacja algorytmu Q-uczenia
- Podsumowanie
- Ćwiczenia
O autorze
O korektorach merytorycznych
Rozdział 1. Pierwsze kroki z uczeniem maszynowym w Pythonie
Rozdział 2. Tworzenie systemu rekomendacji filmów na bazie naiwnego klasyfikatora Bayesa
Rozdział 3. Rozpoznawanie twarzy przy użyciu maszyny wektorów nośnych
Rozdział 4. Prognozowanie kliknięć reklam internetowych przy użyciu algorytmów drzewiastych
Rozdział 5. Prognozowanie kliknięć reklam internetowych przy użyciu regresji logistycznej
Rozdział 6. Skalowanie modelu prognozującego do terabajtowych dzienników kliknięć
Rozdział 7. Prognozowanie cen akcji za pomocą algorytmów regresji
Rozdział 8. Prognozowanie cen akcji za pomocą sieci neuronowych
Rozdział 9. Badanie 20 grup dyskusyjnych przy użyciu technik analizy tekstu
Rozdział 10. Wyszukiwanie ukrytych tematów w grupach dyskusyjnych poprzez ich klastrowanie i modelowanie tematyczne
Rozdział 11. Dobre praktyki uczenia maszynowego
Rozdział 12. Kategoryzacja zdjęć odzieży przy użyciu konwolucyjnej sieci neuronowej
Rozdział 13. Prognozowanie sekwencji danych przy użyciu rekurencyjnej sieci neuronowej
Rozdział 14. Podejmowanie decyzji w skomplikowanych warunkach z wykorzystaniem uczenia przez wzmacnianie
Skorowidz
Helion - inne książki
-
Nowość Promocja
Ta książka stanowi twardy dowód, że matematyka jest elastyczna, kreatywna i radosna. Potraktuj ją jako fascynującą podróż przez świat matematyki abstrakcyjnej do teorii kategorii. Przekonaj się, że bez formalnej wiedzy w tej dziedzinie możesz rozwinąć umiejętność matematycznego myślenia. Abstrakcyjne idee matematyczne pomogą Ci inaczej spojrzeć na aktualne wydarzenia, kwestie sprawiedliwości społecznej i przywilejów społecznych czy nawet na COVID-19.- PDF + ePub + Mobi
- Druk 29 pkt
(27,90 zł najniższa cena z 30 dni)
29.49 zł
59.00 zł (-50%) -
Nowość Promocja
Dzięki tej przystępnej książce, przeznaczonej dla programistów i badaczy, zrozumiesz podstawy techniczne modeli LLM. Dowiesz się, do czego można je zastosować, i odkryjesz elegancję ich architektury. Nauczysz się praktycznego korzystania z frameworka LangChain, zaprojektowanego do tworzenia responsywnych aplikacji. Dowiesz się, jak dostrajać model, jak zadawać mu pytania, poznasz także sprawdzone metody wdrażania i monitorowania środowisk produkcyjnych, dzięki czemu łatwo zbudujesz narzędzia do pisania, zaawansowane roboty konwersacyjne czy nowatorskie pomoce dla programistów. Liczne praktyczne przykłady i fragmenty kodu ułatwią Ci nie tylko przyswojenie podstaw, ale także używanie modeli LLM w innowacyjny i odpowiedzialny sposób.- PDF + ePub + Mobi
- Druk 39 pkt
(37,89 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Nowość Promocja
W tej niezwykle pragmatycznej książce, przeznaczonej dla dyrektorów technicznych, praktyków uczenia maszynowego, twórców aplikacji, analityków biznesowych, inżynierów i badaczy danych, znajdziesz skuteczne techniki używania sztucznej inteligencji. Zaznajomisz się z cyklem życia projektu opartego na generatywnej AI i jej zastosowaniami, a także metodami doboru i dostrajania modeli, generowania danych wspomaganego wyszukiwaniem, uczenia przez wzmacnianie na podstawie informacji zwrotnych od człowieka, kwantyzacji, optymalizacji i wdrażania modeli. Poznasz szczegóły różnych typów modeli, między innymi dużych językowych (LLM), multimodalnych generujących obrazy (Stable Diffusion) i odpowiadających na pytania wizualne (Flamingo/IDEFICS).- PDF + ePub + Mobi
- Druk 39 pkt
(37,89 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Nowość Promocja
Na rynku książek poświęconych analizie biznesowej w sektorze IT dostępnych jest kilka pozycji. Zawierają one informacje na temat praktyk, narzędzi i podejścia stosowanego w tej dziedzinie. Dotychczas jednak brakowało kompendium, które byłoby praktycznym przewodnikiem zbierającym doświadczenia z różnych projektów, firm i od ekspertów podchodzących w odmienny sposób do analizy biznesowej.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Nowość Promocja
Pierwsza była wirtualizacja: oprogramowanie symuluje istnienie zasobów logicznych korzystających z zasobów fizycznych. Po niej przyszła konteneryzacja, polegająca na tworzeniu obrazów - kopii danych - zawierających wszystkie pliki potrzebne do uruchomienia danej aplikacji. Środowiska produkcyjne z obu korzystają równolegle, ale to konteneryzacja stała się swojego rodzaju rewolucją w sektorze IT. Pozwoliła bowiem na sprawniejsze wdrażanie mikroserwisów, a także na optymalizację kosztów działania wielu aplikacji.- PDF + ePub + Mobi
- Druk 19 pkt
(17,90 zł najniższa cena z 30 dni)
19.95 zł
39.90 zł (-50%) -
Nowość Promocja
FPGA pochodzi od angielskiego field-programmable gate array. Polski odpowiednik to: bezpośrednio programowalna macierz bramek. FPGA jest rodzajem programowalnego układu logicznego. Ma tę samą funkcjonalność co układ scalony, tyle że może być wielokrotnie programowany bez demontażu. Z tego powodu znajduje zastosowanie tam, gdzie wymagana jest możliwość zmiany działania, na przykład w satelitach kosmicznych. Budujesz, instalujesz w urządzeniu docelowym, a potem modyfikujesz układ w zależności od potrzeb. Brzmi praktycznie, prawda?- Druk 24 pkt
(22,90 zł najniższa cena z 30 dni)
24.95 zł
49.90 zł (-50%) -
Nowość Promocja
Ta książka ułatwi Ci zgłębienie koncepcji kryjących się za działaniem nowoczesnych baz danych. Dzięki niej zrozumiesz, w jaki sposób struktury dyskowe różnią się od tych w pamięci i jak działają algorytmy efektywnego utrzymywania struktur B drzewa na dysku. Poznasz implementacje pamięci masowej o strukturze dziennika. Znajdziesz tu również wyjaśnienie zasad organizacji węzłów w klaster baz danych i specyfiki środowisk rozproszonych. Dowiesz się, jak algorytmy rozproszone poprawiają wydajność i stabilność systemu i jak uzyskać ostateczną spójność danych. Ponadto w książce zaprezentowano koncepcje antyentropii i plotek, służące do zapewniania zbieżności i rozpowszechniania danych, a także mechanizm transakcji utrzymujący spójność logiczną bazy.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Nowość Promocja
Trudno wyobrazić sobie dzisiejszy świat bez możliwości operowania na danych - tym samym bez arkuszy kalkulacyjnych, do których każdy z nas ma dostęp w swoich komputerach. Najpopularniejszy z nich, czyli Excel, jest masowo używany zarówno w firmach, jak i instytucjach publicznych, ale także w gospodarstwach domowych.- PDF + ePub + Mobi
- Druk 19 pkt
(17,90 zł najniższa cena z 30 dni)
19.95 zł
39.90 zł (-50%) -
Nowość Promocja
Wprowadzenie obserwowalności do systemów jest wyzwaniem technicznym i kulturowym. Dzięki tej praktycznej książce zrozumiesz wartość obserwowalnych systemów i nauczysz się praktykować programowanie sterowane obserwowalnością. Przekonasz się, że dzięki jej wdrożeniu zespoły mogą szybko i bez obaw dostarczać kod, identyfikować wartości odstające i nietypowe zachowania, a ponadto lepiej zrozumieją doświadczenia użytkownika. Znajdziesz tu szczegółowe wyjaśnienia, co jest potrzebne do uzyskania wysokiej obserwowalności, a także szereg wskazówek, jak ulepszyć istniejące rozwiązania i pomyślnie dokonać migracji ze starszych narzędzi, takich jak wskaźniki, monitorowanie i zarządzanie dziennikami. Dowiesz się również, jaki wpływ ma obserwowalność systemu na kulturę organizacji ― i odwrotnie.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Nowość Promocja
Ta książka jest oficjalnym przewodnikiem po języku programowania systemów Rust, udostępnianym na licencji open source. Dzięki niej nauczysz się pisać szybsze i bardziej niezawodne oprogramowanie. Dowiesz się również, jak zapewnić sobie kontrolę nad niskopoziomowymi szczegółami wraz z wysokopoziomową ergonomią, co pozwoli Ci na zwiększenie produktywności i uniknięcie trudności związanych z językami niskiego poziomu. Oprócz przystępnie przekazanej wiedzy i niezliczonych przykładów kodu w książce znalazły się trzy rozdziały poświęcone budowaniu kompletnych projektów: gry w zgadywanie liczb, rustowej implementacji narzędzia wiersza poleceń i serwera wielowątkowego.- PDF + ePub + Mobi
- Druk 64 pkt
(39,90 zł najniższa cena z 30 dni)
64.50 zł
129.00 zł (-50%)
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Książka drukowana
Oceny i opinie klientów: Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III Yuxi (Hayden) Liu (2) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.
(0)
(1)
(0)
(0)
(0)
(1)
więcej opinii