Microservices for Machine Learning Rohit Ranjan
- Autor:
- Rohit Ranjan
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 394
- Dostępne formaty:
-
ePubMobi
Czytaj fragment
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Microservices for Machine Learning
Empowering AI innovations: The fusion of microservices and ML
Key Features
Microservices and ML fundamentals, advancements, and practical applications in various industries.
Simplify complex ML development with distributed and scalable microservices architectures.
Discover real-world scenarios illustrating the fusion of microservices and ML, showcasing AI's impact across industries. Description
Explore the link between microservices and ML in Microservices for Machine Learning. Through this book, you will learn to build scalable systems by understanding modular software construction principles. You will also discover ML algorithms and tools like TensorFlow and PyTorch for developing advanced models.
It equips you with the technical know-how to design, implement, and manage high-performance ML applications using microservices architecture. It establishes a foundation in microservices principles and core ML concepts before diving into practical aspects. You will learn how to design ML-specific microservices, implement them using frameworks like Flask, and containerize them with Docker for scalability. Data management strategies for ML are explored, including techniques for real-time data ingestion and data versioning. This book also addresses crucial aspects of securing ML microservices and using CI/CD practices to streamline development and deployment. Finally, you will discover real-world use cases showcasing how ML microservices are revolutionizing various industries, alongside a glimpse into the exciting future trends shaping this evolving field.
Additionally, you will learn how to implement ML microservices with practical examples in Java and Python. This book merges software engineering and AI, guiding readers through modern development challenges. It is a guide for innovators, boosting efficiency and leading the way to a future of impactful technology solutions. What you will learn
Master the principles of microservices architecture for scalable software design.
Deploy ML microservices using cloud platforms like AWS and Azure for scalability.
Ensure ML microservices security with best practices in data encryption and access control.
Utilize Docker and Kubernetes for efficient microservice containerization and orchestration.
Implement CI/CD pipelines for automated, reliable ML model deployments. Who this book is for
This book is for data scientists, ML engineers, data engineers, DevOps team, and cloud engineers who are responsible for delivering real-time, accurate, and reliable ML models into production. Table of Contents
1. Introducing Microservices and Machine Learning
2. Foundation of Microservices
3. Fundamentals of Machine Learning
4. Designing Microservices for Machine Learning
5. Implementing Microservices for Machine Learning
6. Data Management in Machine Learning Microservices
7. Scaling and Load Balancing Machine Learning Microservices
8. Securing Machine Learning Microservices
9. Monitoring and Logging in Machine Learning Microservices
10. Deployment for Machine Learning Microservices
11. Real World Use Cases
12. Challenges and Future Trends
Microservices and ML fundamentals, advancements, and practical applications in various industries.
Simplify complex ML development with distributed and scalable microservices architectures.
Discover real-world scenarios illustrating the fusion of microservices and ML, showcasing AI's impact across industries. Description
Explore the link between microservices and ML in Microservices for Machine Learning. Through this book, you will learn to build scalable systems by understanding modular software construction principles. You will also discover ML algorithms and tools like TensorFlow and PyTorch for developing advanced models.
It equips you with the technical know-how to design, implement, and manage high-performance ML applications using microservices architecture. It establishes a foundation in microservices principles and core ML concepts before diving into practical aspects. You will learn how to design ML-specific microservices, implement them using frameworks like Flask, and containerize them with Docker for scalability. Data management strategies for ML are explored, including techniques for real-time data ingestion and data versioning. This book also addresses crucial aspects of securing ML microservices and using CI/CD practices to streamline development and deployment. Finally, you will discover real-world use cases showcasing how ML microservices are revolutionizing various industries, alongside a glimpse into the exciting future trends shaping this evolving field.
Additionally, you will learn how to implement ML microservices with practical examples in Java and Python. This book merges software engineering and AI, guiding readers through modern development challenges. It is a guide for innovators, boosting efficiency and leading the way to a future of impactful technology solutions. What you will learn
Master the principles of microservices architecture for scalable software design.
Deploy ML microservices using cloud platforms like AWS and Azure for scalability.
Ensure ML microservices security with best practices in data encryption and access control.
Utilize Docker and Kubernetes for efficient microservice containerization and orchestration.
Implement CI/CD pipelines for automated, reliable ML model deployments. Who this book is for
This book is for data scientists, ML engineers, data engineers, DevOps team, and cloud engineers who are responsible for delivering real-time, accurate, and reliable ML models into production. Table of Contents
1. Introducing Microservices and Machine Learning
2. Foundation of Microservices
3. Fundamentals of Machine Learning
4. Designing Microservices for Machine Learning
5. Implementing Microservices for Machine Learning
6. Data Management in Machine Learning Microservices
7. Scaling and Load Balancing Machine Learning Microservices
8. Securing Machine Learning Microservices
9. Monitoring and Logging in Machine Learning Microservices
10. Deployment for Machine Learning Microservices
11. Real World Use Cases
12. Challenges and Future Trends
Wybrane bestsellery
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Oceny i opinie klientów: Microservices for Machine Learning Rohit Ranjan (0) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.