Advanced Machine Learning Dr. Amit Kumar Tyagi, Dr. Khushboo Tripathi, Dr. Avinash Kumar Sharma
- Autorzy:
- Dr. Amit Kumar Tyagi, Dr. Khushboo Tripathi, Dr. Avinash Kumar Sharma
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 520
- Dostępne formaty:
-
ePubMobi
Czytaj fragment
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Advanced Machine Learning
Our book explains learning algorithms related to real-world problems, with implementations in languages like R, Python, etc.
Key Features
Basic understanding of machine learning algorithms via MATLAB, R, and Python.
Inclusion of examples related to real-world problems, case studies, and questions related to futuristic technologies.
Adding futuristic technologies related to machine learning and deep learning. Description
Our book is divided into several useful concepts and techniques of machine learning. This book serves as a valuable resource for individuals seeking to deepen their understanding of advanced topics in this field.
Learn about various learning algorithms, including supervised, unsupervised, and reinforcement learning, and their mathematical foundations. Discover the significance of feature engineering and selection for enhancing model performance. Understand model evaluation metrics like accuracy, precision, recall, and F1-score, along with techniques like cross-validation and grid search for model selection. Explore ensemble learning methods along with deep learning, unsupervised learning, time series analysis, and reinforcement learning techniques. Lastly, uncover real-world applications of the machine and deep learning algorithms.
After reading this book, readers will gain a comprehensive understanding of machine learning fundamentals and advanced techniques. With this knowledge, readers will be equipped to tackle real-world problems, make informed decisions, and develop innovative solutions using machine and deep learning algorithms. What you will learn
Ability to tackle complex machine learning problems.
Understanding of foundations, algorithms, ethical issues, and how to implement each learning algorithm for their own use/ with their data.
Efficient data analysis for real-time data will be understood by researchers/ students.
Using data analysis in near future topics and cutting-edge technologies. Who this book is for
This book is ideal for students, professors, and researchers. It equips industry experts and academics with the technical know-how and practical implementations of machine learning algorithms. Table of Contents
1. Introduction to Machine Learning
2. Statistical Analysis
3. Linear Regression
4. Logistic Regression
5. Decision Trees
6. Random Forest
7. Rule-Based Classifiers
8. Nave Bayesian Classifier
9. K-Nearest Neighbors Classifiers
10. Support Vector Machine
11. K-Means Clustering
12. Dimensionality Reduction
13. Association Rules Mining and FP Growth
14. Reinforcement Learning
15. Applications of ML Algorithms
16. Applications of Deep Learning
17. Advance Topics and Future Directions
Basic understanding of machine learning algorithms via MATLAB, R, and Python.
Inclusion of examples related to real-world problems, case studies, and questions related to futuristic technologies.
Adding futuristic technologies related to machine learning and deep learning. Description
Our book is divided into several useful concepts and techniques of machine learning. This book serves as a valuable resource for individuals seeking to deepen their understanding of advanced topics in this field.
Learn about various learning algorithms, including supervised, unsupervised, and reinforcement learning, and their mathematical foundations. Discover the significance of feature engineering and selection for enhancing model performance. Understand model evaluation metrics like accuracy, precision, recall, and F1-score, along with techniques like cross-validation and grid search for model selection. Explore ensemble learning methods along with deep learning, unsupervised learning, time series analysis, and reinforcement learning techniques. Lastly, uncover real-world applications of the machine and deep learning algorithms.
After reading this book, readers will gain a comprehensive understanding of machine learning fundamentals and advanced techniques. With this knowledge, readers will be equipped to tackle real-world problems, make informed decisions, and develop innovative solutions using machine and deep learning algorithms. What you will learn
Ability to tackle complex machine learning problems.
Understanding of foundations, algorithms, ethical issues, and how to implement each learning algorithm for their own use/ with their data.
Efficient data analysis for real-time data will be understood by researchers/ students.
Using data analysis in near future topics and cutting-edge technologies. Who this book is for
This book is ideal for students, professors, and researchers. It equips industry experts and academics with the technical know-how and practical implementations of machine learning algorithms. Table of Contents
1. Introduction to Machine Learning
2. Statistical Analysis
3. Linear Regression
4. Logistic Regression
5. Decision Trees
6. Random Forest
7. Rule-Based Classifiers
8. Nave Bayesian Classifier
9. K-Nearest Neighbors Classifiers
10. Support Vector Machine
11. K-Means Clustering
12. Dimensionality Reduction
13. Association Rules Mining and FP Growth
14. Reinforcement Learning
15. Applications of ML Algorithms
16. Applications of Deep Learning
17. Advance Topics and Future Directions
Wybrane bestsellery
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Oceny i opinie klientów: Advanced Machine Learning Dr. Amit Kumar Tyagi, Dr. Khushboo Tripathi, Dr. Avinash Kumar Sharma (0) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.