ODBIERZ TWÓJ BONUS :: »

    Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing (ebook)(audiobook)(audiobook) Książka w języku angielskim

    Okładka książki/ebooka Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

    Okładka książki Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

    Okładka książki Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

    Okładka książki Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

    Ocena:
    Bądź pierwszym, który oceni tę książkę
    Stron:
    352
    2w1 w pakiecie:
    ePub
    Mobi

    Ebook

    169,00 zł 15%
    143,65 zł

    Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

    Przenieś na półkę

    Do przechowalni

    Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way.

    Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax.

    You’ll explore:

    • How streaming and batch data processing patterns compare
    • The core principles and concepts behind robust out-of-order data processing
    • How watermarks track progress and completeness in infinite datasets
    • How exactly-once data processing techniques ensure correctness
    • How the concepts of streams and tables form the foundations of both batch and streaming data processing
    • The practical motivations behind a powerful persistent state mechanism, driven by a real-world example
    • How time-varying relations provide a link between stream processing and the world of SQL and relational algebra

    Zamknij

    Wybierz metodę płatności