Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II
- Autor:
- Jake VanderPlas
- Wydawnictwo:
- Helion
- Wydawnictwo:
- Helion
- Ocena:
- 6.0/6 Opinie: 1
- Stron:
- 544
- Druk:
- oprawa miękka
- Dostępne formaty:
-
PDFePubMobi
Opis
książki
:
Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II
Python udostępnia pierwszorzędne narzędzia i biblioteki przeznaczone specjalnie do pracy z danymi. Zdobyły one uznanie wielu naukowców i ekspertów, ceniących ten język za wysoką jakość rozwiązań służących do wydobywania wiedzy z danych. Aby uzyskać najlepsze możliwe efekty, trzeba dobrze poznać zarówno poszczególne biblioteki Pythona, jak i zasady pracy z nimi.
Ta książka stanowi wszechstronne omówienie wszystkich bibliotek Pythona, potrzebnych naukowcom i specjalistom pracującym z danymi. Znalazł się tu dokładny opis IPythona, NumPy, Pandas, Matplotlib, Scikit-Learn i innych narzędzi. Podręcznik uwzględnia przede wszystkim ich aspekty praktyczne, dzięki czemu świetnie się sprawdzi w rozwiązywaniu codziennych problemów z manipulowaniem, przekształcaniem, oczyszczaniem i wizualizacją różnych typów danych, a także jako pomoc podczas tworzenia modeli statystycznych i modeli uczenia maszynowego. Docenią go wszyscy, którzy zajmują się obliczeniami naukowymi w Pythonie.
To wydanie zawiera jasne przykłady, które pomogą Ci skonfigurować i wykorzystać narzędzia do nauki o danych i uczenia maszynowego.
Anne Bonner, założycielka i dyrektor generalna Content Simplicity
Nauczysz się:
- pracować w naukowym środowisku obliczeniowym IPythona
- korzystać ze specjalistycznych bibliotek przeznaczonych do pracy z danymi
- stosować typy ndarray i DataFrame do przechowywania i przetwarzania danych
- tworzyć różnego rodzaju wizualizacje danych za pomocą Matplotlib
- implementować najważniejsze algorytmy uczenia maszynowego z pakietu Scikit-Learn
Wydobywaj z danych mądre odpowiedzi na trudne pytania!
Python to pierwszorzędne narzędzie wykorzystywane przez wielu naukowców głównie ze względu na jego biblioteki do przechowywania, przekształcania i uzyskiwania wglądu w dane. Istnieje kilka pozycji koncentrujących się na poszczególnych elementach stosu nauki o danych Pythona, ale jedynie w nowym wydaniu Python Data Science. Niezbędne narzędzia do pracy z danymi poznasz je wszystkie. W książce omówiono IPythona, NumPy, Pandas, Matplotlib, Scikit-Learn i inne powiązane z nimi narzędzia.
Dla naukowców i innych osób przetwarzające dane, które są zaznajomione z językiem Python drugie wydanie tego wszechstronnego podręcznika świetnie sprawdzi się podczas rozwiązywania codziennych problemów związanych z manipulowaniem, przekształcaniem, oczyszczaniem i wizualizacją różnych typów danych oraz wykorzystywaniem danych do tworzenia modeli statystycznych i modeli uczenia maszynowego. Jest to po prostu niezbędny punkt odniesienia dla osób wykonujących obliczenia naukowe w Pythonie.
Z tego podręcznika dowiesz się, jak:
- pracować w naukowym środowisku obliczeniowym udostępniamy przez IPythona i Jupytera
- wykorzystać dostępny w NumPy typ ndarray do wydajnego przechowywania i przekształcania gęstych tablic danych,
- wykorzystać dostępny w Pandas typ DataFrame do wydajnego przechowywania i przetwarzania etykietowanych lub kolumnowych danych,
- za pomocą Matplotlib stworzyć różnego rodzaju wizualizacje danych,
- wykorzystać wydajne i przejrzyste implementacje najważniejszych i najpopualrniejszych algorytmów uczenia maszynowego dostępne w pakiecie Scikit-Learn
To świeżo zaktualizowane wydanie zawiera jasne, łatwe do powtórzenia przykłady, które pomogą Ci skonfigurować i wykorzystać narzędzi do nauki o danych i uczenia maszynowego.
Anne Bonner, założycielka i dyrektor generalna Content Simplicity
Wybrane bestsellery
-
Promocja
Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all--IPython, NumPy, pandas, Matplotlib, scikit-learn,- ePub + Mobi 254 pkt
(245,65 zł najniższa cena z 30 dni)
254.15 zł
299.00 zł (-15%) -
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related
- ePub + Mobi 269 pkt
Niedostępna
-
Nowość Promocja
Sztuczna inteligencja stale się rozwija. Właściwie codziennie słyszymy o jej rosnących możliwościach, nowych osiągnięciach i przyszłości, jaką nam przyniesie. Jednak w tej książce skupiamy się nie na przyszłości, a na teraźniejszości i praktycznym obliczu AI - na usługach, które świadczy już dziś. Większość najciekawszych zastosowań sztucznej inteligencji bazuje na ML (uczenie maszynowe, ang. machine learning), NLP (przetwarzanie języka naturalnego, ang. natural language processing) i architekturze RAG (ang. retrieval augmented generation) zwiększającej możliwości tzw. dużych modeli językowych (LLM, ang. large language model). Stanowią one podwaliny budowy systemów AI, bez których te systemy często wcale nie mogłyby powstać.- PDF + ePub + Mobi
- Druk 39 pkt
(37,89 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Odkryj potęgę tworzenia aplikacji webowych z najpopularniejszym językiem programowania ostatnich lat! Ta obszerna, licząca ponad 500 stron publikacja to prawdziwa skarbnica wiedzy dla każdego, kto pragnie zgłębić tajniki projektowania nowoczesnych rozwiązań internetowych w Pythonie. Od fundamentów po zaawansowane techniki - ta książka przeprowadzi
- PDF + ePub + Mobi 34 pkt
-
Nowość Promocja
Przetwarzanie obrazów to dynamicznie rozwijająca się dziedzina, która znajduje zastosowanie w licznych branżach, takich jak medycyna, motoryzacja, przemysł rozrywkowy, bezpieczeństwo, rolnictwo czy marketing. Umożliwia automatyczne rozpoznawanie obiektów, analizę obrazów medycznych i tworzenie interaktywnych aplikacji korzystających ze sztucznej inteligencji. Warto się zagłębić w techniki przetwarzania obrazów, które stały się dostępniejsze i skuteczniejsze niż kiedykolwiek wcześniej dzięki lepszemu wykorzystaniu mocy obliczeniowej niezbędnej do procesowania sieci konwolucyjnych (CNN) i algorytmów YOLO. Ponadto modele generatywne, jak DALL-E czy Midjourney, oferują możliwości generowania obrazów na potrzeby trenowania modeli AI, co pozwala zwiększać różnorodność i wielkość puli danych (ang. data augmentation). Powszechnym narzędziem w segmencie computer vision jest biblioteka OpenCV. Jest używana do analizy obrazów, rozpoznawania obiektów, detekcji twarzy, wykrywania ruchu czy segmentacji obrazów. OpenCV oferuje dostęp do szerokiego zakresu narzędzi i algorytmów, a dobre opanowanie biblioteki otwiera drzwi do ciekawych projektów związanych z widzeniem komputerowym. Umiejętność przetwarzania obrazów jest niezwykle ceniona na rynku pracy – specjaliści mogą liczyć na atrakcyjne stanowiska i różnorodne wyzwania technologiczne.- Videokurs 64 pkt
(34,65 zł najniższa cena z 30 dni)
64.35 zł
99.00 zł (-35%) -
Nowość Promocja
Język programowania ogólnego przeznaczenia Python należy obecnie do najpopularniejszych na świecie. Skąd się bierze jego fenomen? Niewątpliwie kluczowe znaczenie ma tu bardzo czytelna składnia, mocno zbliżona do składni języka naturalnego. Czyni to Pythona dość łatwym do opanowania, także dla początkujących. Osoby bardziej doświadczone doceniają go za wszechstronność. Pythona można używać w różnych dziedzinach, takich jak analiza danych, sztuczna inteligencja, tworzenie stron internetowych, automatyka i automatyzacja, pisanie aplikacji mobilnych i wiele innych. Dodajmy do tego rozbudowany pakiet bibliotek standardowych i oto mamy (niemal) idealny język programowania.- PDF + ePub + Mobi
- Druk 29 pkt
(27,90 zł najniższa cena z 30 dni)
29.49 zł
59.00 zł (-50%) -
Nowość Promocja
Tę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się przede wszystkim na praktycznym aspekcie tych technik. Znalazło się tu również omówienie nowoczesnych rozwiązań, takich jak wykorzystanie uczenia maszynowego do szacowania heterogenicznych efektów. Każda metoda została zilustrowana opisem zastosowania w branży technologicznej.- PDF + ePub + Mobi
- Druk 37 pkt
(35,90 zł najniższa cena z 30 dni)
37.45 zł
74.90 zł (-50%) -
Nowość Promocja
Flask jest jednym z mikroframeworków napisanych w języku Python. Przedrostek „mikro-” oznacza tyle, że framework ten nie wymaga określonych narzędzi ani bibliotek. Bazuje na użytkowych rozszerzeniach i należy do najpopularniejszych tego typu platform Pythona. Wiele firm programistycznych i samodzielnych deweloperów używa go do tworzenia nowoczesnych, skalowalnych aplikacji webowych – są wśród nich między innymi Pinterest czy LinkedIn. Elastyczność, lekkość i prostota użycia czyni z Flaska idealny wybór zarówno dla początkujących, jak i dla zaawansowanych programistów. Z jednej strony bowiem można szybko tworzyć w nim prototypy, z drugiej – Flask nadaje się idealnie do kreowania dużych, skomplikowanych aplikacji.- Videokurs 83 pkt
(39,90 zł najniższa cena z 30 dni)
83.39 zł
139.00 zł (-40%) -
Promocja
Tę książkę docenią średnio zaawansowani użytkownicy Pythona, którzy tworzą aplikacje korzystające z osiągnięć nauki o danych. Znajdziesz w niej omówienie możliwości języka, wbudowanych struktur danych Pythona, jak również takich bibliotek jak NumPy, pandas, scikit-learn i matplotlib. Nauczysz się wczytywania danych w różnych formatach, porządkowania, grupowania i agregowana zbiorów danych, a także tworzenia wykresów i map. Poszczególne zagadnienia zostały zilustrowane praktycznymi przykładami tworzenia rzeczywistych aplikacji, takich jak system obsługi taksówek z wykorzystaniem danych lokalizacyjnych, analiza reguł asocjacyjnych dla danych transakcji czy też uczenie maszynowe modelu przewidującego zmiany kursów akcji. Każdy rozdział zawiera interesujące ćwiczenia, które pozwolą Ci nabrać biegłości w stosowaniu opisanych tu technik.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
Dzięki tej książce dowiesz się, jak pozyskiwać, analizować i wizualizować dane, a potem używać ich do rozwiązywania problemów biznesowych. Wystarczy, że znasz podstawy Pythona i matematyki na poziomie liceum, aby zacząć stosować naukę o danych w codziennej pracy. Znajdziesz tu szereg praktycznych i zrozumiałych przykładów: od usprawniania działalności wypożyczalni rowerów, poprzez wyodrębnianie danych z witryn internetowych, po budowę systemów rekomendacyjnych. Poznasz rozwiązania oparte na danych, przydatne w podejmowaniu decyzji biznesowych. Nauczysz się korzystać z eksploracyjnej analizy danych, przeprowadzać testy A/B i klasyfikację binarną, a także używać algorytmów uczenia maszynowego.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
Ta książka wyjaśni Ci rolę matematyki w tworzeniu, renderowaniu i zmienianiu wirtualnych środowisk 3D, a ponadto pozwoli odkryć tajemnice najpopularniejszych dzisiaj silników gier. Za sprawą licznych praktycznych ćwiczeń zorientujesz się, co się kryje za rysowaniem linii i kształtów graficznych, stosowaniem wektorów i wierzchołków, budowaniem i renderowaniem siatek, jak również przekształcaniem wierzchołków. Nauczysz się używać kodu Pythona, a także bibliotek Pygame i PyOpenGL do budowy własnych silników. Dowiesz się też, jak tworzyć przydatne API i korzystać z nich podczas pisania własnych aplikacji.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Promocja
To trzecie, zaktualizowane i uzupełnione wydanie bestsellerowego podręcznika programowania w Pythonie. Naukę rozpoczniesz od podstawowych koncepcji programowania. Poznasz takie pojęcia jak zmienne, listy, klasy i pętle, a następnie utrwalisz je dzięki praktycznym ćwiczeniom. Dowiesz się, jak zapewnić interaktywność programom, i nauczysz się poprawnego testowania kodu przed dodaniem go do projektu. W kolejnych rozdziałach przystąpisz do praktycznej realizacji trzech projektów: gry zręcznościowej inspirowanej klasyczną Space Invaders, wizualizacji danych za pomocą dostępnych dla Pythona niezwykle użytecznych bibliotek i prostej aplikacji internetowej, gotowej do wdrożenia na serwerze WWW i opublikowania w internecie.- PDF + ePub + Mobi
- Druk 59 pkt
(9,90 zł najniższa cena z 30 dni)
59.50 zł
119.00 zł (-50%)
O autorze książki
Jake VanderPlas jest inżynierem oprogramowania w Google Research. Współtworzy i rozwija narzędzia do przetwarzania dużych ilości danych, w tym pakiety Scikit-Learn, SciPy, Astropy, Altair i JAX. Jest także twórcą samouczków, często występuje jako prelegent na branżowych konferencjach.
Zobacz pozostałe książki z serii
-
Promocja
To drugie, zaktualizowane wydanie przewodnika po systemie Prometheus. Znajdziesz w nim wyczerpujące wprowadzenie do tego oprogramowania, a także wskazówki dotyczące monitorowania aplikacji i infrastruktury, tworzenia wykresów, przekazywania ostrzeżeń, bezpośredniej instrumentacji kodu i pobierania wskaźników pochodzących z systemów zewnętrznych. Zrozumiesz zasady konfiguracji systemu Prometheus, komponentu Node Exporter i menedżera ostrzeżeń Alertmanager. Zapoznasz się też z nowymi funkcjonalnościami języka PromQL, dostawców mechanizmu odkrywania usług i odbiorców menedżera ostrzeżeń Alertmanager. Dokładnie zaprezentowano tu również zagadnienia bezpieczeństwa po stronie serwera, w tym mechanizm TLS i uwierzytelniania podstawowego.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Promocja
Dzięki tej książce zrozumiesz bazowe koncepcje programowania funkcyjnego i przekonasz się, że możesz włączać je do kodu bez rezygnacji z paradygmatu obiektowego. Dowiesz się również, kiedy w swojej codziennej pracy używać takich opcji jak niemutowalność i funkcje czyste i dlaczego warto to robić. Poznasz różne aspekty FP: kompozycję, ekspresyjność, modułowość, wydajność i efektywne manipulowanie danymi. Nauczysz się korzystać z FP w celu zapewnienia wyższego bezpieczeństwa i łatwiejszego utrzymywania kodu. Te wszystkie cenne umiejętności ułatwią Ci pisanie bardziej zwięzłego, rozsądnego i przyszłościowego kodu.- PDF + ePub + Mobi
- Druk 43 pkt
(39,90 zł najniższa cena z 30 dni)
43.50 zł
87.00 zł (-50%) -
Promocja
Ta książka będzie świetnym uzupełnieniem wiedzy o Flutterze i Darcie, sprawdzi się również jako wsparcie podczas rozwiązywania konkretnych problemów. Znalazło się tu ponad sto receptur, dzięki którym poznasz tajniki pisania efektywnego kodu, korzystania z narzędzi udostępnianych przez framework Flutter czy posługiwania się rozwiązaniami dostawców usług chmurowych. Dowiesz się, jak należy pracować z bazami Firebase i platformą Google Cloud. Przy czym poszczególne receptury, poza rozwiązaniami problemów, zawierają również nieco szersze omówienia, co pozwoli Ci lepiej wykorzystać zalety Fluttera i Darta — spójnego rozwiązania do wydajnego budowania aplikacji!- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
Ten przewodnik, który docenią programiści i architekci, zawiera wyczerpujące omówienie zagadnień projektowania, funkcjonowania i modyfikowania architektury API. Od strony praktycznej przedstawia strategie budowania i testowania API REST umożliwiającego połączenie oferowanej funkcjonalności na poziomie mikrousług. Opisuje stosowanie bram API i infrastruktury typu service mesh. Autorzy dokładnie przyglądają się kwestiom zapewnienia bezpieczeństwa systemów opartych na API, w tym uwierzytelnianiu, autoryzacji i szyfrowaniu. Sporo miejsca poświęcają również ewolucji istniejących systemów w kierunku API i różnych docelowych platform.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
W tej książce omówiono ponad 20 najprzydatniejszych wzorców projektowych, dzięki którym tworzone aplikacje internetowe będą łatwe w późniejszej obsłudze technicznej i w trakcie skalowania. Poza wzorcami projektowymi przedstawiono wzorce generowania i wydajności działania, których znaczenie dla użytkowania aplikacji jest ogromne. Opisano również nowoczesne wzorce Reacta, między innymi Zaczepy, Komponenty Wyższego Rzędu i Właściwości Generowania. Sporo miejsca poświęcono najlepszym praktykom związanym z organizacją kodu, wydajnością działania czy generowaniem, a także innym zagadnieniom, które pozwalają na podniesienie jakości aplikacji internetowych.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
To gruntownie zaktualizowane i uzupełnione wydanie praktycznego przewodnika po wdrażaniu i testowaniu kontenerów Dockera. Przedstawia proces przygotowania pakietu aplikacji ze wszystkimi ich zależnościami, a także jego testowania, wdrażania, skalowania i utrzymywania w środowiskach produkcyjnych. Zawiera omówienie Docker Compose i trybu Docker Swarm, opis zagadnień związanych z Kubernetes, jak również przykłady optymalizacji obrazów Dockera. W tym wydaniu zaprezentowano ponadto najlepsze praktyki i narzędzie BuildKit, opisano wsparcie obrazów wieloarchitekturowych, kontenerów rootless i uwzględniono wiele innych ważnych informacji.- PDF + ePub + Mobi
- Druk 43 pkt
(39,90 zł najniższa cena z 30 dni)
43.50 zł
87.00 zł (-50%) -
Promocja
To książka przeznaczona dla osób, które pracują ze zbiorami danych. Jest praktycznym przewodnikiem po koncepcjach algebry liniowej, pomyślanym tak, by ułatwić ich zrozumienie i zastosowanie w użytecznych obliczeniach. Poszczególne zagadnienia przedstawiono za pomocą kodu Pythona, wraz z przykładami ich wykorzystania w nauce o danych, uczeniu maszynowym, uczeniu głębokim, symulacjach i przetwarzaniu danych biomedycznych. Dzięki podręcznikowi nauczysz się arytmetyki macierzowej, poznasz istotne rozkłady macierzy, w tym LU i QR, a także rozkład według wartości osobliwych, zapoznasz się też z takimi zagadnieniami jak model najmniejszych kwadratów i analiza głównych składowych.- PDF + ePub + Mobi
- Druk 38 pkt
(34,90 zł najniższa cena z 30 dni)
38.50 zł
77.00 zł (-50%) -
Promocja
Oto kolejne wydanie zwięzłego podręcznika dla programistów Javy, który ma ułatwić maksymalne wykorzystanie technologii tego języka w wersji 17. Treść została skrupulatnie przejrzana i uzupełniona o materiał dotyczący nowości w obiektowym modelu Javy. Pierwsza część książki obejmuje wprowadzenie do języka i do pracy na platformie Javy. Druga zawiera opis podstawowych pojęć i interfejsów API, których znajomość jest niezbędna każdemu programiście Javy. Mimo niewielkiej objętości w podręczniku znalazły się liczne przykłady wykorzystania potencjału tego języka programowania, a także zastosowania najlepszych praktyk programistycznych w rzeczywistej pracy.- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Promocja
Oto zwięzły i praktyczny przewodnik po usłudze GA4 i jej integracji z chmurą. Szczególnie skorzystają z niego analitycy danych, biznesu i marketingu. Opisano tu wszystkie istotne kwestie dotyczące tego nowego, potężnego modelu analitycznego. Szczególną uwagę poświęcono bardziej zaawansowanym funkcjonalnościom GA4. Zaprezentowano architekturę GA4, strategie danych, a także informacje dotyczące pozyskiwania, przechowywania i modelowania danych. W książce znalazło się również omówienie typowych przypadków użycia dla aktywacji danych i instrukcji przydatnych podczas implementacji tych przypadków. Co istotne, poszczególne zagadnienia zostały zilustrowane praktycznymi przykładami kodu.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Promocja
Dzięki tej książce dowiesz się, w jaki sposób uczynić architekturę oprogramowania wystarczająco plastyczną, aby mogła odzwierciedlać zachodzące zmiany biznesowe i technologiczne. W nowym wydaniu rozbudowano pojęcia zmiany kierowanej i przyrostowej, a także przedstawiono najnowsze techniki dotyczące funkcji dopasowania, automatycznego zarządzania architekturą i danych ewolucyjnych. Zaprezentowano praktyki inżynieryjne umożliwiające ewoluowanie systemów oprogramowania, jak również podejścia strukturalne, w tym zasady projektowe, które ułatwiają zarządzanie tą ewolucją. Opisano ponadto, w jaki sposób zasady i praktyki architektury ewolucyjnej wiążą się z różnymi elementami procesu tworzenia oprogramowania.- PDF + ePub + Mobi
- Druk 33 pkt
(32,90 zł najniższa cena z 30 dni)
33.50 zł
67.00 zł (-50%)
Ebooka "Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II" przeczytasz na:
-
czytnikach Inkbook, Kindle, Pocketbook, Onyx Boox i innych
-
systemach Windows, MacOS i innych
-
systemach Windows, Android, iOS, HarmonyOS
-
na dowolnych urządzeniach i aplikacjach obsługujących formaty: PDF, EPub, Mobi
Masz pytania? Zajrzyj do zakładki Pomoc »
Audiobooka "Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II" posłuchasz:
-
w aplikacji Ebookpoint na Android, iOS, HarmonyOs
-
na systemach Windows, MacOS i innych
-
na dowolonych urządzeniach i aplikacjach obsługujących format MP3 (pliki spakowane w ZIP)
Masz pytania? Zajrzyj do zakładki Pomoc »
Kurs Video "Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II" zobaczysz:
-
w aplikacjach Ebookpoint i Videopoint na Android, iOS, HarmonyOs
-
na systemach Windows, MacOS i innych z dostępem do najnowszej wersji Twojej przeglądarki internetowej
Recenzje książki: Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II (1) Poniższe recenzje mogły powstać po przekazaniu recenzentowi darmowego egzemplarza poszczególnych utworów bądź innej zachęty do jej napisania np. zapłaty.
-
Recenzja: czytanepodchmurka Rutkowska PaulinaRecenzja dotyczy produktu: ksiązka drukowanaCzy recenzja była pomocna:
"Python Data Science" jest książką, która omawia wszystkie bibliotki, które są niezbędne do pracy z danymi. Zaprezentowany został między innymi dokładny opis IPythona, NumPy, Pandas, Matplotlib czy Scikit-Learn. Dzięki uwzględnieniu przez autora ich praktycznych aspektów, ten podręcznik sprawdzi się doskonalne przy rozwiązywaniu codziennych problemów z przekształcaniem, oczyszczaniem, manipulowaniem czy wizualizacją różnych typów danych. Będzie on również świetną podstawą do tworzenia modeli statystycznych czy modeli uczenia maszynowego. Powiedziałabym, że jest to podręcznik dedykowany osobom, które zrobiły już swoje pierwszego kroki z tym językiem i potrafią poruszać się w środkowisku Pythona, jednak dla osób mniej zaawansowanych znajdą się tutaj podstwowe pojęcia takie jak nauka o danych czy uczenie maszynowe.
Szczegóły książki
- Tytuł oryginału:
- Python Data Science Handbook: Essential Tools for Working with Data, 2nd Edition
- Tłumaczenie:
- Filip Kamiński
- ISBN Książki drukowanej:
- 978-83-289-0068-4, 9788328900684
- Data wydania książki drukowanej :
- 2023-12-06
- ISBN Ebooka:
- 978-83-289-0069-1, 9788328900691
- Data wydania ebooka :
- 2023-11-07 Data wydania ebooka często jest dniem wprowadzenia tytułu do sprzedaży i może nie być równoznaczna z datą wydania książki papierowej. Dodatkowe informacje możesz znaleźć w darmowym fragmencie. Jeśli masz wątpliwości skontaktuj się z nami sklep@ebookpoint.pl.
- Format:
- 165x235
- Numer z katalogu:
- 206507
- Rozmiar pliku Pdf:
- 64.7MB
- Rozmiar pliku ePub:
- 27.7MB
- Rozmiar pliku Mobi:
- 52.2MB
- Pobierz przykładowy rozdział PDF »
- Przykłady na ftp » 30.9MB
Spis treści książki
- 1. Wprowadzenie do IPythona oraz Jupytera
- Uruchamianie powłoki IPythona
- Uruchamianie Jupyter Notebook
- IPython - pomoc i dokumentacja
- Dostęp do dokumentacji za pomocą ?
- Dostęp do kodu źródłowego za pomocą ??
- Przeglądanie zawartości modułów za pomocą autouzupełniania z tabulatorem
- Skróty klawiaturowe w powłoce IPython
- Skróty do nawigacji
- Skróty do wprowadzania tekstu
- Skróty związane z historią poleceń
- Pozostałe skróty
- 2. Funkcje interaktywne
- Magiczne polecenia IPythona
- Uruchamianie zewnętrznego kodu za pomocą %run
- Pomiar czasu wykonania za pomocą %timeit
- Pomoc dotycząca magicznych poleceń ?, %magic i %lsmagic
- Historia wejścia i wyjścia
- Obiekty In i Out IPythona
- Symbol podkreślenia i poprzednie wyjścia
- Wyłączanie wyjścia
- Inne magiczne polecenia
- Polecenia IPythona i powłoki
- Krótkie wprowadzenie do powłoki
- Polecenia powłoki w IPythonie
- Przekazywanie wartości do i z powłoki
- Magiczne polecenia związane z powłoką
- Magiczne polecenia IPythona
- 3. Debugowanie i profilowanie
- Błędy i debugowanie
- Kontrolowanie wyjątków za pomocą %xmode
- Debugowanie - gdy lektura śladu nie wystarcza
- Profilowanie kodu i pomiary czasu jego wykonania
- Pomiar czasu wykonania fragmentu kodu za pomocą %timeit i %time
- Profilowanie całych skryptów za pomocą %prun
- Profilowanie linia po linii za pomocą %lprun
- Profilowanie pamięci za pomocą %memit i %mprun
- Więcej materiałów na temat IPythona
- Materiały dostępne w sieci
- Książki
- Błędy i debugowanie
- 4. Zrozumieć typy danych w Pythonie
- Typ całkowitoliczbowy w Pythonie to coś więcej niż zwykły int
- Lista w Pythonie to coś więcej niż zwykła lista
- Tablice o stałym typie w Pythonie
- Tworzenie tablic z list
- Tworzenie tablic od podstaw
- Standardowe typy danych NumPy
- 5. Podstawy pracy z tablicami NumPy
- Atrybuty tablicy NumPy
- Indeksowanie tablicy - dostęp do pojedynczych elementów
- Slicing, czyli sposób na dostęp do podtablic
- Jednowymiarowe podtablice
- Wielowymiarowe podtablice
- Podtablice jako widoki bez kopiowania
- Kopiowanie tablic
- Zmiana kształtu tablic
- Konkatenacja i dzielenie tablic
- Konkatenacja tablic
- Dzielenie tablic
- 6. Obliczenia z użyciem tablic NumPy - funkcje uniwersalne
- Powolność pętli
- Wprowadzenie do funkcji uniwersalnych
- Przegląd funkcji uniwersalnych dostępnych w NumPy
- Arytmetyka tablicowa
- Wartość bezwzględna
- Funkcje trygonometryczne
- Potęgi i logarytmy
- Funkcje uniwersalne do zastosowań specjalnych
- Zaawansowane możliwości funkcji uniwersalnych
- Określanie miejsca zapisu danych wyjściowych
- Agregacje
- Metoda outer
- Więcej materiałów na temat funkcji uniwersalnych
- 7. Agregacje - minimum, maksimum i wszystko pomiędzy nimi
- Sumowanie wartości w tablicy
- Minimum i maksimum
- Agregacja w wielu wymiarach
- Inne funkcje agregujące
- Przykład: jaki jest średni wzrost prezydenta USA?
- 8. Obliczenia na tablicach - broadcasting
- Co to jest broadcasting?
- Zasady broadcastingu
- Pierwszy przykład
- Drugi przykład
- Trzeci przykład
- Broadcasting w praktyce
- Centrowanie wartości w tablicy
- Rysowanie wykresów funkcji dwuwymiarowych
- 9. Porównania, maski i logika boolowska
- Przykład: sprawdzanie, przez ile dni padało
- Operatory porównania jako funkcje uniwersalne
- Praca z tablicami wartości logicznych
- Zliczanie wpisów
- Operatory logiczne
- Tablice wartości logicznych jako maski
- Słowa kluczowe and i or kontra operatory &/|
- 10. Fancy indexing
- Jak działa fancy indexing?
- Łączenie różnych metod indeksowania
- Przykład: wybieranie losowych punktów
- Modyfikowanie wartości za pomocą fancy indexingu
- Przykład: podział danych na kubełki
- 11. Sortowanie tablic
- Szybkie sortowanie w NumPy - np.sort i np.argsort
- Sortowanie wzdłuż wierszy lub kolumn
- Sortowanie częściowe - partycjonowanie
- Przykład: metoda k najbliższych sąsiadów
- 12. Dane ustrukturyzowane - ustrukturyzowane tablice NumPy
- Tworzenie ustrukturyzowanych tablic
- Bardziej zaawansowane typy złożone
- Tablice rekordów - ustrukturyzowane tablice z niespodzianką
- W stronę Pandas
- 13. Wprowadzenie do obiektów Pandas
- Obiekt typu Series
- Obiekty typu Series jako uogólnienie tablic NumPy
- Obiekt typu Series jako szczególny rodzaj słownika
- Tworzenie obiektów typu Series
- Obiekt typu DataFrame
- Ramka danych jako uogólnienie tablicy NumPy
- Ramka danych jako szczególny rodzaj słownika
- Tworzenie obiektów typu DataFrame
- Obiekt typu Index
- Indeks jako niemutowalna tablica
- Indeks jako uporządkowany zbiór
- Obiekt typu Series
- 14. Indeksowanie i wybieranie
- Wybór danych z obiektów typu Series
- Obiekt typu Series jako słownik
- Obiekt typu Series jako jednowymiarowa tablica
- Indeksatory: loc i iloc
- Wybór danych z obiektów typu DataFrame
- Obiekt typu DataFrame jako słownik
- Obiekt typu DataFrame jako dwuwymiarowa tablica
- Inne konwencje związane z indeksowaniem
- Wybór danych z obiektów typu Series
- 15. Operacje na danych w Pandas
- Funkcje uniwersalne - zachowanie indeksu
- Funkcje uniwersalne - dopasowanie indeksu
- Dopasowanie indeksu w obiektach typu Series
- Dopasowanie indeksu w obiektach typu DataFrame
- Funkcje uniwersalne - operacje pomiędzy ramkami danych a obiektami typu Series
- 16. Obsługa brakujących danych
- Kompromisy w konwencjach dotyczących brakujących danych
- Brakujące dane w Pandas
- None jako rodzaj wartownika
- NaN - brakujące dane liczbowe
- NaN i None w Pandas
- Nullowalne typy danych w Pandas
- Praca z wartościami typu null
- Wykrywanie wartości typu null
- Usuwanie wartości typu null
- Uzupełnianie braków
- 17. Indeksowanie hierarchiczne
- Wielokrotnie indeksowane obiekty typu Series
- Zły sposób
- Lepszy sposób - MultiIndex z Pandas
- MultiIndex jako dodatkowy wymiar
- MultiIndex - metody tworzenia
- Tworzenie indeksu hierarchicznego z użyciem jawnego konstruktora
- Nazwy poziomów indeksu hierarchicznego
- MultiIndex dla kolumn
- MultiIndex - indeksowanie i slicing
- Obiekty typu Series z wielokrotnymi indeksami
- Obiekty typu DataFrame z wielokrotnymi indeksami
- MultiIndex - zmiana kolejności
- Posortowane i nieposortowane indeksy
- Metody stack i unstack
- Ustawianie i resetowanie indeksu
- Wielokrotnie indeksowane obiekty typu Series
- 18. Łączenie zbiorów danych - concat i append
- Przypomnienie: konkatenacja tablic NumPy
- Prosta konkatenacja za pomocą pd.concat
- Zduplikowane indeksy
- Konkatenacja za pomocą złączeń
- Metoda append
- 19. Łączenie zbiorów danych - merge i join
- Algebra relacji
- Rodzaje złączeń
- Złączenia jeden-do-jednego
- Złączenia wiele-do-jednego
- Złączenia wiele-do-wielu
- Określanie klucza, na podstawie którego ma być wykonane złączenie
- Słowo kluczowe on
- Słowa kluczowe left_on i right_on
- Słowa kluczowe left_index i right_index
- Wykorzystanie arytmetyki zbiorów w złączeniach
- Nakładające się nazwy kolumn - słowo kluczowe suffixes
- Przykład: dane dotyczące stanów USA
- 20. Agregacja i grupowanie
- Dane na temat planet
- Prosta agregacja w Pandas
- Grupowanie - podziel, zastosuj funkcję, połącz
- Podziel, zastosuj funkcję, połącz
- Obiekt GroupBy
- Agregacja, filtrowanie, transformacja, wywoływanie funkcji
- Określanie sposobu podziału
- Przykład grupowania
- 21. Tabele przestawne
- Dane na potrzeby przykładu
- Ręczne tworzenie tabel przestawnych
- Składnia tabel przestawnych
- Wielopoziomowe tabele przestawne
- Dodatkowe opcje tabel przestawnych
- Przykład: dane dotyczące liczby urodzeń
- 22. Zwektoryzowane operacje na łańcuchach znaków
- Wprowadzenie do pracy z łańcuchami znaków w Pandas
- Metody pracujące na łańcuchach znaków w Pandas
- Metody podobne do metod znanych z Pythona
- Metody wykorzystujące wyrażenia regularne
- Różne metody
- Przykład: baza przepisów
- Prosty system rekomendacji przepisów
- Jak można rozwinąć ten projekt?
- 23. Praca z szeregami czasowymi
- Daty i godziny w Pythonie
- Daty i godziny w Pythonie - datetime i dateutil
- Typowane tablice znaczników czasu - datetime64 z NumPy
- Daty i godziny w Pandas - najlepsze elementy z obu światów
- Szeregi czasowe w Pandas - indeksowanie według czasu
- Struktury danych do przechowywania szeregów czasowych w Pandas
- Regularne sekwencje dat - pd.date_range
- Częstotliwości i przesunięcia
- Ponowne próbkowanie, przesuwanie i okna
- Ponowne próbkowanie i zmiana częstotliwości
- Przesunięcia w czasie
- Ruchome okna
- Przykład: wizualizacja danych o liczbie rowerów w Seattle
- Wizualizacja danych
- Zagłębianie się w dane
- Daty i godziny w Pythonie
- 24. Wysoka wydajność w Pandas - eval i query
- Dlaczego warto zastosować query i eval - wyrażenia złożone
- Wydajne operacje z użyciem pandas.eval
- Operacje na kolumnach z użyciem DataFrame.eval
- Przypisanie w DataFrame.eval
- Zmienne lokalne w DataFrame.eval
- Metoda DataFrame.query
- Wydajność - kiedy warto korzystać z tych funkcji
- Materiały dodatkowe
- 25. Wskazówki dotyczące korzystania z Matplotlib
- Importowanie Matplotlib
- Ustawianie stylów
- Czy trzeba używać show()? Jak wyświetlić wygenerowane wykresy?
- Rysowanie z poziomu skryptu
- Rysowanie z poziomu IPythona
- Rysowanie z poziomu notatnika Jupytera
- Zapisywanie rysunków do pliku
- Dwa interfejsy w cenie jednego
- 26. Proste wykresy liniowe
- Dostosowywanie wykresu - kolory i style linii
- Dostosowywanie wykresu - granice osi
- Etykietowanie wykresów
- Pułapki Matplotlib
- 27. Proste wykresy punktowe
- Tworzenie wykresów punktowych za pomocą plt.plot
- Tworzenie wykresów punktowych za pomocą plt.scatter
- plot a scatter - uwaga na temat wydajności
- Wizualizacja niepewności
- Słupki błędów
- Błędy ciągłe
- 28. Wykresy gęstości i wykresy konturowe
- Wizualizacja trójwymiarowych funkcji
- Histogramy, kubełki i gęstości
- Dwuwymiarowe histogramy i podział danych na kubełki
- plt.hist2d - dwuwymiarowy histogram
- plt.hexbin - podział na sześciokątne kubełki
- Jądrowy estymator gęstości
- 29. Dostosowywanie legend
- Wybór elementów do legendy
- Legenda opisująca rozmiary punktów
- Wiele legend
- 30. Dostosowywanie pasków kolorów
- Dostosowywanie pasków kolorów
- Wybór mapy kolorów
- Granice kolorów i wartości spoza zakresu
- Dyskretne paski kolorów
- Przykład: odręcznie zapisane cyfry
- Dostosowywanie pasków kolorów
- 31. Podwykresy
- plt.axes - manualne tworzenie podwykresów
- plt.subplot - proste siatki podwykresów
- plt.subplots - cała siatka za jednym zamachem
- plt.GridSpec - bardziej skomplikowane układy
- 32. Tekst i adnotacje
- Przykład: wpływ świąt na liczbę urodzeń w Stanach Zjednoczonych
- Transformacje i położenie tekstu
- Strzałki i adnotacje
- 33. Dostosowywanie znaczników osi
- Główne i dodatkowe podziałki
- Ukrywanie podziałek lub ich etykiet
- Zmniejszenie lub zwiększenie liczby podziałek
- Inne możliwości formatowania podziałek
- Lokalizatory i formatery - podsumowanie
- 34. Dostosowywanie wykresów - konfiguracja i style
- Ręczne dostosowywanie wykresów
- Zmiana ustawień domyślnych - rcParams
- Arkusze stylów
- Styl domyślny
- Styl FiveThiryEight
- Styl ggplot
- Styl z książki Bayesian Methods for Hackers
- Ciemne tło
- Rysunki w skali szarości
- Styl Seaborn
- 35. Wykresy w przestrzeni trójwymiarowej
- Trójwymiarowe punkty i krzywe
- Trójwymiarowe wykresy konturowe
- Wykresy typu wireframe i wykresy powierzchniowe
- Triangulacja powierzchni
- Przykład: wizualizacja wstęgi Möbiusa
- 36. Wizualizacje z użyciem pakietu Seaborn
- Przegląd możliwości pakietu Seaborn
- Histogramy, jądrowy estymator gęstości i wykresy gęstości
- Wykresy typu pairplot
- Grupy histogramów
- Wykresy typu catplot
- Wspólne rozkłady prawdopodobieństwa
- Wykresy słupkowe
- Przykład: eksploracja danych na temat czasu ukończenia maratonu
- Materiały dodatkowe
- Inne biblioteki do wizualizacji danych w Pythonie
- Przegląd możliwości pakietu Seaborn
- 37. Czym jest uczenie maszynowe?
- Rodzaje uczenia maszynowego
- Przykłady problemów uczenia maszynowego
- Klasyfikacja, czyli przewidywanie dyskretnych etykiet
- Regresja, czyli przewidywanie ciągłych etykiet
- Klasteryzacja, czyli ustalanie etykiet w oparciu o nieetykietowane dane
- Redukcja wymiarowości - wnioskowanie o strukturze danych pozbawionych etykiet
- Podsumowanie
- 38. Wprowadzenie do Scikit-Learn
- Reprezentacja danych w Scikit-Learn
- Macierz cech
- Tablica wartości docelowych
- API Estimator
- Podstawy korzystania z API
- Przykład uczenia nadzorowanego: prosta regresja liniowa
- Przykład uczenia nadzorowanego: klasyfikacja irysów
- Przykład uczenia nienadzorowanego: redukcja wymiarowości w zbiorze Iris
- Przykład uczenia nienadzorowanego: klasteryzacja irysów
- Zastosowanie: eksploracja zbioru odręcznie zapisanych cyfr
- Wczytywanie i wizualizacja danych
- Przykład uczenia nienadzorowanego: redukcja wymiarowości
- Klasyfikacja cyfr
- Podsumowanie
- Reprezentacja danych w Scikit-Learn
- 39. Hiperparametry i walidacja modelu
- Walidacja modelu
- Niewłaściwy sposób walidacji modelu
- Właściwy sposób walidacji modelu, czyli podział danych na zbiór uczący i testowy
- Walidacja modelu za pomocą walidacji krzyżowej
- Wybór najlepszego modelu
- Kompromis pomiędzy obciążeniem a wariancją
- Krzywe walidacji w Scikit-Learn
- Krzywe uczenia
- Walidacja w praktyce - wyszukiwanie w siatce
- Podsumowanie
- Walidacja modelu
- 40. Inżynieria cech
- Cechy o charakterze kategorialnym
- Cechy tekstowe
- Konwersja obrazów na cechy
- Cechy pochodne
- Imputacja brakujących danych
- Potoki przetwarzania w inżynierii cech
- 41. Dogłębne spojrzenie - naiwny klasyfikator Bayesa
- Klasyfikacja bayesowska
- Naiwny gaussowski klasyfikator Bayesa
- Naiwny wielomianowy klasyfikator Bayesa
- Przykład: klasyfikacja tekstu
- Kiedy korzystać z naiwnego klasyfikatora Bayesa
- 42. Dogłębne spojrzenie - regresja liniowa
- Prosta regresja liniowa
- Regresja funkcjami bazowymi
- Wielomianowe funkcje bazowe
- Gaussowskie funkcje bazowe
- Regularyzacja
- Regresja grzbietowa (regularyzacja L)
- Regresja lasso (regularyzacja L)
- Przykład: przewidywanie ruchu rowerowego
- 43. Dogłębne spojrzenie - maszyny wektorów nośnych
- Motywacje dla maszyn wektorów nośnych
- Maszyny wektorów nośnych - maksymalizacja marginesu
- Dopasowywanie maszyny wektorów nośnych
- Maszyny wektorów nośnych z nieliniowymi granicami - jądrowy SVM
- Dostrajanie SVM - zmiękczanie marginesów
- Przykład: rozpoznawanie twarzy
- Podsumowanie
- 44. Dogłębne spojrzenie - drzewa decyzyjne i lasy losowe
- Motywacje dla lasów losowych - drzewa decyzyjne
- Tworzenie drzewa decyzyjnego
- Drzewa decyzyjne i nadmierne dopasowanie
- Zespoły estymatorów - lasy losowe
- Regresja z użyciem lasów losowych
- Przykład: wykorzystanie lasu losowego do klasyfikacji cyfr
- Podsumowanie
- Motywacje dla lasów losowych - drzewa decyzyjne
- 45. Dogłębne spojrzenie - analiza głównych składowych
- Wprowadzenie do analizy głównych składowych
- PCA jako metoda redukcji wymiarowości
- Wykorzystanie PCA do wizualizacji - odręcznie zapisane cyfry
- Co reprezentują składowe?
- Wybór liczby składowych
- PCA jako metoda filtrowania szumów
- Przykład: rozpoznawanie twarzy
- Podsumowanie
- Wprowadzenie do analizy głównych składowych
- 46. Dogłębne spojrzenie - manifold learning
- Manifold learning - słowo "hello"
- Skalowanie wielowymiarowe
- Skalowanie wielowymiarowe jako metoda manifold learningu
- Osadzenia nieliniowe - gdy zawodzi skalowanie wielowymiarowe
- Rozmaitości nieliniowe - lokalnie liniowe osadzanie
- Kilka przemyśleń na temat metod manifold learningu
- Przykład: mapowanie izometryczne w zbiorze zdjęć twarzy
- Przykład: wizualizacja struktury w liczbach
- 47. Dogłębne spojrzenie - klasteryzacja za pomocą algorytmu k-średnich
- Wprowadzenie do algorytmu k-średnich
- Estymacja-maksymalizacja
- Przykłady
- Przykład 1. Algorytm k-średnich w zbiorze digits
- Przykład 2. Algorytm k-średnich w kompresji kolorów
- 48. Dogłębne spojrzenie - modele mieszanin rozkładów Gaussa
- Motywacje dla modeli mieszanin rozkładów Gaussa - słabości algorytmu k-średnich
- Uogólnienie algorytmu EM - modele mieszanin rozkładów Gaussa
- Wybór rodzaju kowariancji
- Modele mieszanin rozkładów Gaussa jako narzędzie do szacowania gęstości
- Przykład: wykorzystanie GMM do generowania nowych danych
- 49. Dogłębne spojrzenie - jądrowy estymator gęstości
- Motywacje dla jądrowego estymatora gęstości - histogramy
- Jądrowy estymator gęstości w praktyce
- Wybór parametru wygładzania za pomocą walidacji krzyżowej
- Przykład: nie tak naiwny klasyfikator Bayesa
- Anatomia niestandardowego estymatora
- Korzystanie z naszego niestandardowego estymatora
- 50. Zastosowanie - potok przetwarzania do wykrywania twarzy
- Cechy HOG
- HOG w akcji - prosty detektor twarzy
- 1. Stwórz zbiór "pozytywnych" próbek
- 2. Stwórz zbiór "negatywnych" próbek
- 3. Połącz zbiory i wyodrębnij cechy HOG
- 4. Wytrenuj maszynę wektorów nośnych
- 5. Znajdź twarze na nowym zdjęciu
- Zastrzeżenia i ulepszenia
- Materiały dodatkowe na temat uczenia maszynowego
Wprowadzenie
Część I. Jupyter - coś więcej niż zwykły Python
Część II. Wprowadzenie do NumPy
Część III. Przekształcanie danych za pomocą Pandas
Część IV. Wizualizacja z użyciem Matplotlib
Część V. Uczenie maszynowe
Helion - inne książki
-
Nowość Promocja
Ta książka stanowi twardy dowód, że matematyka jest elastyczna, kreatywna i radosna. Potraktuj ją jako fascynującą podróż przez świat matematyki abstrakcyjnej do teorii kategorii. Przekonaj się, że bez formalnej wiedzy w tej dziedzinie możesz rozwinąć umiejętność matematycznego myślenia. Abstrakcyjne idee matematyczne pomogą Ci inaczej spojrzeć na aktualne wydarzenia, kwestie sprawiedliwości społecznej i przywilejów społecznych czy nawet na COVID-19.- PDF + ePub + Mobi
- Druk 29 pkt
(27,90 zł najniższa cena z 30 dni)
29.49 zł
59.00 zł (-50%) -
Nowość Promocja
Dzięki tej przystępnej książce, przeznaczonej dla programistów i badaczy, zrozumiesz podstawy techniczne modeli LLM. Dowiesz się, do czego można je zastosować, i odkryjesz elegancję ich architektury. Nauczysz się praktycznego korzystania z frameworka LangChain, zaprojektowanego do tworzenia responsywnych aplikacji. Dowiesz się, jak dostrajać model, jak zadawać mu pytania, poznasz także sprawdzone metody wdrażania i monitorowania środowisk produkcyjnych, dzięki czemu łatwo zbudujesz narzędzia do pisania, zaawansowane roboty konwersacyjne czy nowatorskie pomoce dla programistów. Liczne praktyczne przykłady i fragmenty kodu ułatwią Ci nie tylko przyswojenie podstaw, ale także używanie modeli LLM w innowacyjny i odpowiedzialny sposób.- PDF + ePub + Mobi
- Druk 39 pkt
(37,89 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Nowość Promocja
W tej niezwykle pragmatycznej książce, przeznaczonej dla dyrektorów technicznych, praktyków uczenia maszynowego, twórców aplikacji, analityków biznesowych, inżynierów i badaczy danych, znajdziesz skuteczne techniki używania sztucznej inteligencji. Zaznajomisz się z cyklem życia projektu opartego na generatywnej AI i jej zastosowaniami, a także metodami doboru i dostrajania modeli, generowania danych wspomaganego wyszukiwaniem, uczenia przez wzmacnianie na podstawie informacji zwrotnych od człowieka, kwantyzacji, optymalizacji i wdrażania modeli. Poznasz szczegóły różnych typów modeli, między innymi dużych językowych (LLM), multimodalnych generujących obrazy (Stable Diffusion) i odpowiadających na pytania wizualne (Flamingo/IDEFICS).- PDF + ePub + Mobi
- Druk 39 pkt
(37,89 zł najniższa cena z 30 dni)
39.50 zł
79.00 zł (-50%) -
Nowość Promocja
Na rynku książek poświęconych analizie biznesowej w sektorze IT dostępnych jest kilka pozycji. Zawierają one informacje na temat praktyk, narzędzi i podejścia stosowanego w tej dziedzinie. Dotychczas jednak brakowało kompendium, które byłoby praktycznym przewodnikiem zbierającym doświadczenia z różnych projektów, firm i od ekspertów podchodzących w odmienny sposób do analizy biznesowej.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Nowość Promocja
Pierwsza była wirtualizacja: oprogramowanie symuluje istnienie zasobów logicznych korzystających z zasobów fizycznych. Po niej przyszła konteneryzacja, polegająca na tworzeniu obrazów - kopii danych - zawierających wszystkie pliki potrzebne do uruchomienia danej aplikacji. Środowiska produkcyjne z obu korzystają równolegle, ale to konteneryzacja stała się swojego rodzaju rewolucją w sektorze IT. Pozwoliła bowiem na sprawniejsze wdrażanie mikroserwisów, a także na optymalizację kosztów działania wielu aplikacji.- PDF + ePub + Mobi
- Druk 19 pkt
(17,90 zł najniższa cena z 30 dni)
19.95 zł
39.90 zł (-50%) -
Nowość Promocja
FPGA pochodzi od angielskiego field-programmable gate array. Polski odpowiednik to: bezpośrednio programowalna macierz bramek. FPGA jest rodzajem programowalnego układu logicznego. Ma tę samą funkcjonalność co układ scalony, tyle że może być wielokrotnie programowany bez demontażu. Z tego powodu znajduje zastosowanie tam, gdzie wymagana jest możliwość zmiany działania, na przykład w satelitach kosmicznych. Budujesz, instalujesz w urządzeniu docelowym, a potem modyfikujesz układ w zależności od potrzeb. Brzmi praktycznie, prawda?- Druk 24 pkt
(22,90 zł najniższa cena z 30 dni)
24.95 zł
49.90 zł (-50%) -
Nowość Promocja
Ta książka ułatwi Ci zgłębienie koncepcji kryjących się za działaniem nowoczesnych baz danych. Dzięki niej zrozumiesz, w jaki sposób struktury dyskowe różnią się od tych w pamięci i jak działają algorytmy efektywnego utrzymywania struktur B drzewa na dysku. Poznasz implementacje pamięci masowej o strukturze dziennika. Znajdziesz tu również wyjaśnienie zasad organizacji węzłów w klaster baz danych i specyfiki środowisk rozproszonych. Dowiesz się, jak algorytmy rozproszone poprawiają wydajność i stabilność systemu i jak uzyskać ostateczną spójność danych. Ponadto w książce zaprezentowano koncepcje antyentropii i plotek, służące do zapewniania zbieżności i rozpowszechniania danych, a także mechanizm transakcji utrzymujący spójność logiczną bazy.- PDF + ePub + Mobi
- Druk 44 pkt
(39,90 zł najniższa cena z 30 dni)
44.50 zł
89.00 zł (-50%) -
Nowość Promocja
Trudno wyobrazić sobie dzisiejszy świat bez możliwości operowania na danych - tym samym bez arkuszy kalkulacyjnych, do których każdy z nas ma dostęp w swoich komputerach. Najpopularniejszy z nich, czyli Excel, jest masowo używany zarówno w firmach, jak i instytucjach publicznych, ale także w gospodarstwach domowych.- PDF + ePub + Mobi
- Druk 19 pkt
(17,90 zł najniższa cena z 30 dni)
19.95 zł
39.90 zł (-50%) -
Nowość Promocja
Wprowadzenie obserwowalności do systemów jest wyzwaniem technicznym i kulturowym. Dzięki tej praktycznej książce zrozumiesz wartość obserwowalnych systemów i nauczysz się praktykować programowanie sterowane obserwowalnością. Przekonasz się, że dzięki jej wdrożeniu zespoły mogą szybko i bez obaw dostarczać kod, identyfikować wartości odstające i nietypowe zachowania, a ponadto lepiej zrozumieją doświadczenia użytkownika. Znajdziesz tu szczegółowe wyjaśnienia, co jest potrzebne do uzyskania wysokiej obserwowalności, a także szereg wskazówek, jak ulepszyć istniejące rozwiązania i pomyślnie dokonać migracji ze starszych narzędzi, takich jak wskaźniki, monitorowanie i zarządzanie dziennikami. Dowiesz się również, jaki wpływ ma obserwowalność systemu na kulturę organizacji ― i odwrotnie.- PDF + ePub + Mobi
- Druk 34 pkt
(32,90 zł najniższa cena z 30 dni)
34.50 zł
69.00 zł (-50%) -
Nowość Promocja
Ta książka jest oficjalnym przewodnikiem po języku programowania systemów Rust, udostępnianym na licencji open source. Dzięki niej nauczysz się pisać szybsze i bardziej niezawodne oprogramowanie. Dowiesz się również, jak zapewnić sobie kontrolę nad niskopoziomowymi szczegółami wraz z wysokopoziomową ergonomią, co pozwoli Ci na zwiększenie produktywności i uniknięcie trudności związanych z językami niskiego poziomu. Oprócz przystępnie przekazanej wiedzy i niezliczonych przykładów kodu w książce znalazły się trzy rozdziały poświęcone budowaniu kompletnych projektów: gry w zgadywanie liczb, rustowej implementacji narzędzia wiersza poleceń i serwera wielowątkowego.- PDF + ePub + Mobi
- Druk 64 pkt
(39,90 zł najniższa cena z 30 dni)
64.50 zł
129.00 zł (-50%)
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Książka drukowana
Oceny i opinie klientów: Python Data Science. Niezbędne narzędzia do pracy z danymi. Wydanie II Jake VanderPlas (1) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.
(1)
(0)
(0)
(0)
(0)
(0)