Daniel Whitenack is a trained PhD data scientist with over 10 years' experience working on data-intensive applications in industry and academia. Recently, Daniel has focused his development efforts on open source projects related to running machine learning (ML) and artificial intelligence (AI) in cloud-native infrastructure (Kubernetes, for instance), maintaining reproducibility and provenance for complex data pipelines, and implementing ML/AI methods in new languages such as Go. Daniel co-hosts the Practical AI podcast, teaches data science/engineering at Ardan Labs and Purdue University, and has spoken at conferences around the world (including ODSC, PyCon, DataEngConf, QCon, GopherCon, Spark Summit, and Applied ML Days, among others).
więcej »