ODBIERZ TWÓJ BONUS :: »

Statystyka praktyczna w data science. 50 kluczowych zagadnień w językach R i Python. Wydanie II

Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
4.0/6  Opinie: 7
Stron:
296
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Książka 41,40 zł najniższa cena z 30 dni

69,00 zł (-30%)
48,30 zł

Dodaj do koszyka Wysyłamy w 24h

41,40 zł najniższa cena z 30 dni

Ebook 29,90 zł najniższa cena z 30 dni

69,00 zł (-50%)
34,50 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

29,90 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Metody statystyczne są kluczowym narzędziem w data science, mimo to niewielu analityków danych zdobyło wykształcenie w ich zakresie. Może im to utrudniać uzyskiwanie dobrych efektów. Zrozumienie praktycznych zasad statystyki okazuje się ważne również dla programistów R i Pythona, którzy tworzą rozwiązania dla data science. Kursy podstaw statystyki rzadko jednak uwzględniają tę perspektywę, a większość podręczników do statystyki w ogóle nie zajmuje się narzędziami wywodzącymi się z informatyki.

To drugie wydanie popularnego podręcznika statystyki przeznaczonego dla analityków danych. Uzupełniono je o obszerne przykłady w Pythonie oraz wyjaśnienie, jak stosować poszczególne metody statystyczne w problemach data science, a także jak ich nie używać. Skoncentrowano się też na tych zagadnieniach statystyki, które odgrywają istotną rolę w data science. Wyjaśniono, które koncepcje są ważne i przydatne z tej perspektywy, a które mniej istotne i dlaczego. Co ważne, poszczególne koncepcje i zagadnienia praktyczne przedstawiono w sposób przyswajalny i zrozumiały również dla osób nienawykłych do posługiwania się statystyką na co dzień.

W książce między innymi:

  • analiza eksploracyjna we wstępnym badaniu danych
  • próby losowe a jakość dużych zbiorów danych
  • podstawy planowania eksperymentów
  • regresja w szacowaniu wyników i wykrywaniu anomalii
  • statystyczne uczenie maszynowe
  • uczenie nienadzorowane a znaczenie danych niesklasyfikowanych

Statystyka: klasyczne narzędzia w najnowszych technologiach!

BĄDŹ JESIENIARĄ, ŁAP ZA KSIĄŻKI! / Ebooki -50%, Książki -30%

Wybrane bestsellery

O autorach książki

Peter Bruce jest ekspertem w dziedzinie nauczania statystyki. Prowadzi Institute for Statistics Education, gdzie oferuje setki kursów skierowanych między innymi do naukowców. 
 

Dr Andrew Bruce jest głównym analitykiem w Amazonie. Od trzydziestu lat zajmuje się statystyką i nauką o danych, opracowując rozwiązania problemów z wielu branż. 
 

Dr Peter Gedeck jest badaczem w Collaborative Drug Discovery. Tworzy algorytmy uczenia maszynowego do przewidywania właściwości substancji stanowiących potencjalne leki. 

Zobacz pozostałe książki z serii

Helion - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Książka
48,30 zł
Dodaj do koszyka
Ebook
34,50 zł
Dodaj do koszyka
Sposób płatności