ODBIERZ TWÓJ BONUS :: »

    Foundations for Architecting Data Solutions. Managing Successful Data Projects (ebook)(audiobook)(audiobook) Książka w języku angielskim

    Okładka książki/ebooka Foundations for Architecting Data Solutions. Managing Successful Data Projects

    Okładka książki Foundations for Architecting Data Solutions. Managing Successful Data Projects

    Okładka książki Foundations for Architecting Data Solutions. Managing Successful Data Projects

    Okładka książki Foundations for Architecting Data Solutions. Managing Successful Data Projects

    Ocena:
    Bądź pierwszym, który oceni tę książkę
    Stron:
    190
    2w1 w pakiecie:
    ePub
    Mobi

    Ebook

    159,00 zł 15%
    135,15 zł

    Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

    Przenieś na półkę

    Do przechowalni

    While many companies ponder implementation details such as distributed processing engines and algorithms for data analysis, this practical book takes a much wider view of big data development, starting with initial planning and moving diligently toward execution. Authors Ted Malaska and Jonathan Seidman guide you through the major components necessary to start, architect, and develop successful big data projects.

    Everyone from CIOs and COOs to lead architects and developers will explore a variety of big data architectures and applications, from massive data pipelines to web-scale applications. Each chapter addresses a piece of the software development life cycle and identifies patterns to maximize long-term success throughout the life of your project.

    • Start the planning process by considering the key data project types
    • Use guidelines to evaluate and select data management solutions
    • Reduce risk related to technology, your team, and vague requirements
    • Explore system interface design using APIs, REST, and pub/sub systems
    • Choose the right distributed storage system for your big data system
    • Plan and implement metadata collections for your data architecture
    • Use data pipelines to ensure data integrity from source to final storage
    • Evaluate the attributes of various engines for processing the data you collect

    Zamknij

    Wybierz metodę płatności