Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal
- Autorzy:
- Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 418
- Dostępne formaty:
-
ePubMobi
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Data Analytics: Principles, Tools, and Practices
A Complete Data Analytics Guide for Learners and Professionals.
Key Features
Learn Big Data, Hadoop Architecture, HBase, Hive and NoSQL Database.
Dive into Machine Learning, its tools, and applications.
Coverage of applications of Big Data, Data Analysis, and Business Intelligence. Description
These days critical problem solving related to data and data sciences is in demand. Professionals who can solve real data science problems using data science tools are in demand. The book Data Analytics: Principles, Tools, and Practices can be considered a handbook or a guide for professionals who want to start their journey in the field of data science.
The journey starts with the introduction of DBMS, RDBMS, NoSQL, and DocumentDB. The book introduces the essentials of data science and the modern ecosystem, including the important steps such as data ingestion, data munging, and visualization. The book covers the different types of analysis, different Hadoop ecosystem tools like Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database. It also includes the different machine learning techniques that are useful for data analytics and how to visualize data with different graphs and charts. The book discusses useful tools and approaches for data analytics, supported by concrete code examples.
After reading this book, you will be motivated to explore real data analytics and make use of the acquired knowledge on databases, BI/DW, data visualization, Big Data tools, and statistical science. What you will learn
Familiarize yourself with Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database.
Learn to manage data warehousing with real time transaction processing.
Explore various machine learning techniques that apply to data analytics.
Learn how to visualize data using a variety of graphs and charts using real-world examples from the industry.
Acquaint yourself with Big Data tools and statistical techniques for machine learning. Who this book is for
IT graduates, data engineers and entry-level professionals who have a basic understanding of the tools and techniques but want to learn more about how they fit into a broader context are encouraged to read this book. Table of Contents
1. Database Management System
2. Online Transaction Processing and Data Warehouse
3. Business Intelligence and its deeper dynamics
4. Introduction to Data Visualization
5. Advanced Data Visualization
6. Introduction to Big Data and Hadoop
7. Application of Big Data Real Use Cases
8. Application of Big Data
9. Introduction to Machine Learning
10. Advanced Concepts to Machine Learning
11. Application of Machine Learning
Learn Big Data, Hadoop Architecture, HBase, Hive and NoSQL Database.
Dive into Machine Learning, its tools, and applications.
Coverage of applications of Big Data, Data Analysis, and Business Intelligence. Description
These days critical problem solving related to data and data sciences is in demand. Professionals who can solve real data science problems using data science tools are in demand. The book Data Analytics: Principles, Tools, and Practices can be considered a handbook or a guide for professionals who want to start their journey in the field of data science.
The journey starts with the introduction of DBMS, RDBMS, NoSQL, and DocumentDB. The book introduces the essentials of data science and the modern ecosystem, including the important steps such as data ingestion, data munging, and visualization. The book covers the different types of analysis, different Hadoop ecosystem tools like Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database. It also includes the different machine learning techniques that are useful for data analytics and how to visualize data with different graphs and charts. The book discusses useful tools and approaches for data analytics, supported by concrete code examples.
After reading this book, you will be motivated to explore real data analytics and make use of the acquired knowledge on databases, BI/DW, data visualization, Big Data tools, and statistical science. What you will learn
Familiarize yourself with Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database.
Learn to manage data warehousing with real time transaction processing.
Explore various machine learning techniques that apply to data analytics.
Learn how to visualize data using a variety of graphs and charts using real-world examples from the industry.
Acquaint yourself with Big Data tools and statistical techniques for machine learning. Who this book is for
IT graduates, data engineers and entry-level professionals who have a basic understanding of the tools and techniques but want to learn more about how they fit into a broader context are encouraged to read this book. Table of Contents
1. Database Management System
2. Online Transaction Processing and Data Warehouse
3. Business Intelligence and its deeper dynamics
4. Introduction to Data Visualization
5. Advanced Data Visualization
6. Introduction to Big Data and Hadoop
7. Application of Big Data Real Use Cases
8. Application of Big Data
9. Introduction to Machine Learning
10. Advanced Concepts to Machine Learning
11. Application of Machine Learning
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Oceny i opinie klientów: Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal (0) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.