ODBIERZ TWÓJ BONUS :: »

Application Observability with Elastic Navin Sabharwal, Ravishankar Shukla

Język publikacji: 1
Application Observability with Elastic Navin Sabharwal, Ravishankar Shukla - okladka książki

Application Observability with Elastic Navin Sabharwal, Ravishankar Shukla - okladka książki

Autorzy:
Navin Sabharwal, Ravishankar Shukla
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
324
Dostępne formaty:
     ePub
     Mobi

Ebook 39,90 zł najniższa cena z 30 dni

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

39,90 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

Real User Monitoring, Application Performance Monitoring, Alerting, and Dashboarding Using Elastic Stack

Key Features
Numerous examples and visual representations of Elastic APM's capabilities.
Covers Elastic APM cloud deployment, Kubernetes clusters, and real-user monitoring.
Includes Kibana's visualization, Alerting and Dashboarding features.

Description
This book teaches an APM engineer how to monitor software services and applications in real time, including collecting detailed performance data on the response time for incoming requests, database queries, cache calls, and external HTTP requests. The book helps readers to explore the architecture and components of the Elastic APM stack. It also teaches you how to architect, deploy, and configure the Elastic APM stack to meet your specific requirements.

The book focuses on monitoring and observability for applications and infrastructures built with Containers and Kubernetes. The book helps you configure APM capabilities like synthetic transaction and real-user transaction monitoring, integration with open-source tools like Prometheus, and data collection and processing using Logstash. Additionally, the book discusses how to use the Kibana dashboard features provided by Elastic APM in conjunction with alerting and dashboards to analyze the application's performance.

Finally, the book teaches Site Reliability Engineers (SREs) how to meet service-level objectives through indicators such as availability, latency, quality, and saturation.

What you will learn
Unleash the need and the applications of observability.
Learn to architect and deploy the Elastic APM stack.
Practice observability of monolithic and microservices-based applications.
Learn advanced observability of Containers and Kubernetes cluster infrastructure.
Uncover insights on user experience, uptime, and synthetic monitoring.
Learn to use Kibana for exploiting alerts and visualization features.

Who this book is for
Professionals in the fields of Application Performance Monitoring, Observability, Site Reliability Engineering, Software Development, AIOPS, and Cloud and Data Center Architecture will benefit greatly from this book. It would be beneficial, but not necessary, to have some knowledge of programming.

Table of Contents
1. Introduction to Application Observability
2. Elastic Observability Features
3. Elastic Observability Deployment Architecture
4. Deployment of the Elastic Observability Platform
5. Use Case. Observability for a Containerized Java Application
6. Use Case. Observability for a Kubernetes-based Application
7. Observability for a .Net Core Application
8. Elastic Observability. User Experience, Uptime, and Synthetic Monitoring
9. Logstash Pipelines in Elastic Observability
10. Prometheus Integration with the Elastic Observability Platform
11. Machine Learning, Alerting, and Dashboards

Wybrane bestsellery

BPB Publications - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.