ODBIERZ TWÓJ BONUS :: »

Apache Spark Quick Start Guide. Quickly learn the art of writing efficient big data applications with Apache Spark Shrey Mehrotra, Akash Grade

Język publikacji: angielskim
Apache Spark Quick Start Guide. Quickly learn the art of writing efficient big data applications with Apache Spark Shrey Mehrotra, Akash Grade - okladka książki

Apache Spark Quick Start Guide. Quickly learn the art of writing efficient big data applications with Apache Spark Shrey Mehrotra, Akash Grade - okladka książki

Autorzy:
Shrey Mehrotra, Akash Grade
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
154
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook 29,90 zł najniższa cena z 30 dni

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

29,90 zł najniższa cena z 30 dni

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Prezent last minute w ebookpoint.pl
Apache Spark is a ?exible framework that allows processing of batch and real-time data. Its unified engine has made it quite popular for big data use cases. This book will help you to get started with Apache Spark 2.0 and write big data applications for a variety of use cases.
It will also introduce you to Apache Spark – one of the most popular Big Data processing frameworks. Although this book is intended to help you get started with Apache Spark, but it also focuses on explaining the core concepts.
This practical guide provides a quick start to the Spark 2.0 architecture and its components. It teaches you how to set up Spark on your local machine. As we move ahead, you will be introduced to resilient distributed datasets (RDDs) and DataFrame APIs, and their corresponding transformations and actions. Then, we move on to the life cycle of a Spark application and learn about the techniques used to debug slow-running applications. You will also go through Spark’s built-in modules for SQL, streaming, machine learning, and graph analysis.
Finally, the book will lay out the best practices and optimization techniques that are key for writing efficient Spark applications. By the end of this book, you will have a sound fundamental understanding of the Apache Spark framework and you will be able to write and optimize Spark applications.

Wybrane bestsellery

O autorach książki

Shrey Mehrotra has over 8 years of IT experience and, for the past 6 years, has been designing the architecture of cloud and big-data solutions for the finance, media, and governance sectors. Having worked on research and development with big-data labs and been part of Risk Technologies, he has gained insights into Hadoop, with a focus on Spark, HBase, and Hive. His technical strengths also include Elasticsearch, Kafka, Java, YARN, Sqoop, and Flume. He likes spending time performing research and development on different big-data technologies. He is the coauthor of the books Learning YARN and Hive Cookbook, a certified Hadoop developer, and he has also written various technical papers.
Akash Grade is a data engineer living in New Delhi, India. Akash graduated with a BSc in computer science from the University of Delhi in 2011, and later earned an MSc in software engineering from BITS Pilani. He spends most of his time designing highly scalable data pipeline using big-data solutions such as Apache Spark, Hive, and Kafka. Akash is also a Databricks-certified Spark developer. He has been working on Apache Spark for the last five years, and enjoys writing applications in Python, Go, and SQL.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.