ODBIERZ TWÓJ BONUS :: »

Web scraping w Data Science. Kurs video. Techniki uczenia maszynowego w Pythonie

Podstawowe informacje:
Czas trwania: 03:58:34
Poziom: podstawowy/średnio zaawansowany
Autor: Tobiasz Bajek
Liczba lekcji: 11
Technologia: tensorflow, Python 3.9, Beautiful Soup, pandas, matplotlib, Selenium, Visual Studio Code, numpy
Dla firm
Rozwiń umiejętności swoich pracowników dzięki kursom video
Dowiedz się więcej
  • Monitorowanie postępów pracowników. Przejrzyste raporty i imienne certyfikaty ukończenia kursów
  • Atrakcyjne rabaty dla zespołów. Im więcej pracowników liczy zespół, tym większy uzyskasz rabat
  • Doradztwo w wyborze tematyki szkoleń. Mamy setki kursów, dostosujemy program nauczania pod Twój zespół
Indywidualnie
125,30 zł 179,00 zł (-30%)
39,90 zł najniższa cena z 30 dni Dodaj do koszyka
Korzyści:
  • Certyfikat ukończenia
  • Materiały dodatkowe do kursu
  • Test online
  • Dożywotni dostęp
  • Dostęp w aplikacji (także offline)
  • Napisy w języku polskim
Ten kurs należy do ścieżki Data Scientist z Pythonem
Czas trwania: 66 godz.
DOWIEDZ SIĘ WIĘCEJ
Ten kurs należy do ścieżki Data Scientist z Pythonem »

Czego się nauczysz?

  • Projektowania i implementacji baz danych relacyjnych w SQL
  • Tworzenia schematów, tabel, relacji i kluczy
  • Pisania złożonych zapytań SQL z JOIN, GROUP BY i podzapytaniami
  • Definiowania widoków, procedur składowanych i funkcji
  • Zarządzania transakcjami, blokadami i poziomami izolacji
  • Tworzenia indeksów i optymalizacji zapytań
  • Tworzenia kopii zapasowych i przywracania baz danych
  • Bezpiecznego udostępniania danych i nadawania uprawnień użytkownikom

Spis lekcji

1. Scraping danych 01:21:16
1.1. Konfiguracja środowiska i pierwszy program
OGLĄDAJ » 00:07:53
1.2. Formatowanie kodu w Pythonie zgodnie z PEP8
00:16:03
1.3. Pobieranie danych na temat zanieczyszczeń powietrza
00:14:50
1.4. Biblioteki Selenium i BeautifulSoup
00:21:19
1.5. Zdrapywanie współrzędnych geograficznych
00:21:11
2. Uczenie maszynowe 02:37:18
2.1. Teoria uczenia maszynowego
00:26:33
2.2. Biblioteka NumPy
00:18:44
2.3. Biblioteka Pandas
00:24:08
2.4. Własna sieć neuronowa
00:28:24
2.5. Propagacja wsteczna
00:31:12
2.6. TensorFlow. Trenowanie sieci na podstawie pobranych danych
00:28:17

Obierz kurs na... scraping danych i uczenie maszynowe

W danych dostępnych w Internecie tkwi ogromny potencjał – poddane obróbce i analizie, są źródłem cennych informacji, niezbędnych do badań rynku, personalizowania treści, przewidywania trendów i monitorowania działań konkurencji. W posiadaniu takiej wiedzy chce być prawdopodobnie każda firma... tylko jak ją zdobyć? Do pozyskiwania ustrukturyzowanych danych z różnych źródeł w Internecie służy technika zwana scrapingiem danych (w sieci można także spotkać dosłowne tłumaczenie: zdrapywanie danych). W celu uzyskania jeszcze lepszych rezultatów biznesowych często łączy się ją z uczeniem maszynowym. Razem otwierają przed światem nowe możliwości rozwoju w postaci automatyzacji zbiorów treningowych czy tworzenia coraz bardziej złożonych modeli maszynowych, przetwarzających różnorodne typy danych. Umiejętne połączenie machine learning i scrapingu pomaga usprawnić klasyfikację, prognozowanie i cały proces trenowania sieci na dużych zbiorach danych. Być może te pojęcia brzmią nieco abstrakcyjnie, ale efekty ich działań nie są nam obce. Zderzamy się z nimi codziennie, choćby wtedy, gdy otrzymujemy personalizowane reklamy, oferty i rekomendacje. Tak sektor e-commerce i usług wykorzystuje naukę, by dotrzeć do swoich klientów. Co więcej, w marcu 2023 roku laboratorium OpenAI opublikowało model sieci neuronowej GPT-4, który dorównuje w rozumieniu języka naturalnego ludziom. Bez wątpienia zrewolucjonizuje on naszą codzienność i szereg gałęzi gospodarki. Model ten opiera się na architekturze zwanej Transformer, jednak zasada uczenia się tej sieci nie odbiega zbytnio od prostych sieci neuronowych i jest oparta na propagacji wstecznej. Zatem znajomość podstawowych budulców sieci neuronowych to cenna umiejętność, pozwalająca lepiej zrozumieć rewolucję, z którą mamy do czynienia. Wiesz już, ile korzyści płynie z biegłości w machine learning i scrapingu, pora przełożyć to na realne kompetencje. Czas najwyższy, by wykorzystać technologię i moc płynącą w danych do tworzenia rozwiązań przyszłości!

W trakcie naszego profesjonalnego szkolenia:

  • Poznasz zasady formatowania kodu w Pythonie, zgodnie ze standardem PEP 8
  • Nauczysz się typowania i tworzenia docstringów
  • Dowiesz się, czym jest zdrapywanie danych i kiedy jest legalne
  • Poznasz elementy kodu strony internetowej i przeglądarkowe narzędzia dla deweloperów
  • Za pomocą sterownika Selenium nauczysz się scrapingu danych stron ładowanych dynamicznie
  • Poznasz moduł BeautifulSoup służący do zbierania danych z sieci
  • Opanujesz podstawy uczenia maszynowego – teorię i matematykę sieci neuronowych
  • Poznasz matematykę uczenia się sieci – propagację wsteczną
  • Dowiesz się, jakie zastosowania ma funkcja aktywacji
  • Skorzystasz w praktyce z możliwości bibliotek NumPy i pandas
  • Utworzysz własną sieć neuronową
  • Zdefiniujesz kilka klas warstw sieci, w tym warstwę głęboką
  • Przeprowadzisz propagację wsteczną dla powyższych warstw
  • Za pomocą biblioteki TensorFlow utworzysz prostą sieć neuronową
  • Zaimplementujesz model uczenia się sieci neuronowej
  • Przetestujesz utworzoną sieć na zbiorze danych z biblioteki scikit-learn
  • Opanujesz uczenie sieci na podstawie wcześniej zdrapanych danych
  • Utworzysz funkcję do diagnostyki wyników zwracanych przez sieć

Web scraping w data science. Kurs video. Techniki uczenia maszynowego w Pythonie pozwoli Ci zdobyć umiejętności potrzebne do sprawnego pozyskiwania informacji ze stron internetowych. Opanujesz fundamentalne wzorce i zagadnienia uczenia maszynowego, a następnie wdrożysz się w bardziej zaawansowane tajniki. Nauczysz się matematyki sieci neuronowej i poznasz podstawowe bloki matematyczne budujące sieć, po czym zaimplementujesz sprawną sieć od podstaw. Wiedza na temat budowy i działania poszczególnych elementów sieci neuronowej znacznie ułatwi Ci proces dalszej, samodzielnej nauki. W praktyce sprawdzisz, jakie możliwości daje scraping, na przykładzie pobierania z Internetu danych dotyczących zanieczyszczeń miast. Poznasz bibliotekę NumPy i wykorzystasz jej znajomość do tworzenia tablic, generowania liczb losowych, funkcji aktywacji i sformułowania funkcji błędu średniokwadratowego. Utworzysz funkcje aktywacji, takie jak tangens hiperboliczny czy sigmoid. Dowiesz się, do czego służy biblioteka pandas, i wykonasz funkcje do prezentowania danych, jak również nauczysz się wczytywać dane do ramek DataFrames i zapisywać je do plików .csv. Za pomocą TensorFlow sprawnie utworzysz własną sieć neuronową. Korzystając z biblioteki scikit-learn, przygotujesz dane treningowe dla modeli maszynowych. Wszystkie przykłady i zadania są napisane w Pythonie, dlatego jego znajomość co najmniej na poziomie podstawowym jest zalecana.

Kombinacja machine learning i scrapingu pozwala na tworzenie zaawansowanych rozwiązań analitycznych, prognozowych i automatyzacyjnych, a programistom ułatwia osiąganie wielu celów od początku do końca – od pozyskania danych po wyciągnięcie z nich nowej informacji. Obie technologie są dziś powszechnie stosowane w przemyśle, a kwalifikacje z obszaru inżynierii danych to istotny atut na rynku pracy.

Cześć, zachęcam Was serdecznie do nauki w ramach tego kursu. Dołożyłem wszelkich starań, by precyzyjnie przekazać wiedzę na temat zdrapywania i uczenia maszynowego. Wybrałem taką kombinację tematów, ponieważ liczę, że popchnie to Was do podejmowania projektów i rozwiązywania problemów na własną rękę za pomocą stworzonego przez siebie oprogramowania. Mogą z tego powstać fantastyczne rzeczy, które pozytywnie wpłyną na życie innych ludzi. Dziękuję za zainteresowanie i życzę Wam miłej nauki! 

Tobiasz Bajek

Wybrane bestsellery

O autorze kursu video

Tobiasz Bajek – ukończył automatykę i robotykę w krakowskiej Akademii Górniczo-Hutniczej. Przez kilka lat pracował w branży aerospace, między innymi tworzył systemy sterowania rakiet w Wojskowym Instytucie Technicznym Uzbrojenia pod Warszawą. Obecnie jest starszym inżynierem oprogramowania w firmie Vaayu, gdzie zajmuje się programem liczącym ślad węglowy przedsiębiorstw, a także pokrewnymi projektami inżynierii danych. Programuje w Go, Pythonie i języku grafowych baz danych Cypher. Ma doświadczenie międzynarodowe – poza Polską pracował również w Szwajcarii i we Francji. Po godzinach wsłuchuje się w muzykę elektroniczną Squarepushera i piosenki zespołu Republika. Jest zapalonym czytelnikiem i wielkim fanem książek Lema, szczególnie esejów filozoficznych (Dialogi, Golem XIV, Summa Technologiae).

Oceny i opinie klientów: Web scraping w Data Science. Kurs video. Techniki uczenia maszynowego w Pythonie Tobiasz Bajek (2)

Informacja o opiniach
Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię. Użytkownik mógł otrzymać punkty za opublikowanie opinii uprawniającej do uzyskania rabatu w ramach Programu Kadr.
6.0
  • 6 (2)
  • 5 (0)
  • 4 (0)
  • 3 (0)
  • 2 (0)
  • 1 (0)
  • Kurs jest spoko. Bardzo treściwy.

    Opinia: M Opinia dodana: 2023-06-17 Ocena: 6   
    Opinia potwierdzona zakupem
    Opinia dotyczy produktu: kurs video
    Czy opinia była pomocna:
  • Super kurs, przerobiłem już połowę i jestem miło zaskoczony jak prosto ten Pan tłumaczy! Teoria machine learning wydaje się być ciekawa i nie mogę się doczekać jak pochłonę wszystko :) Kiedy następna część?

    Opinia: Janetof Opinia dodana: 2023-06-14 Ocena: 6   
    Opinia niepotwierdzona zakupem
    Opinia dotyczy produktu: kurs video
    Czy opinia była pomocna:
więcej opinii »

Szczegóły kursu

Dane producenta » Dane producenta:

Helion SA
ul. Kościuszki 1C
41-100 Gliwice
e-mail: gpsr@helion.pl
Format: Online
Data aktualizacji: 2023-04-27
ISBN: 978-83-832-2414-5, 9788383224145
Numer z katalogu: 194708

Videopoint - inne kursy

Kurs video
125,30 zł
Dodaj do koszyka
Sposób płatności