ODBIERZ TWÓJ BONUS :: »

Deep Learning for Data Architects Shekhar Khandelwal

Język publikacji: angielskim
Autor:
Shekhar Khandelwal
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
262
Dostępne formaty:
     ePub
     Mobi
Czytaj fragment

Ebook 39,90 zł najniższa cena z 30 dni

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

39,90 zł najniższa cena z 30 dni

Przenieś na półkę

Do przechowalni

A hands-on guide to building and deploying deep learning models with Python

Key Features
Acquire the skills to perform exploratory data analysis, uncover insights, and preprocess data for deep learning tasks.
Build and train various types of neural networks, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
Gain hands-on experience by working on practical projects and applying deep learning techniques to real-world problems.

Description
Deep Learning for Data Architects is a comprehensive guide that bridges the gap between data architecture and deep learning. It provides a solid foundation in Python for data science and serves as a launchpad into the world of AI and deep learning.

The book begins by addressing the challenges of transforming raw data into actionable insights. It provides a practical understanding of data handling and covers the construction of neural network-based predictive models. The book then explores specialized networks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). The book delves into the theory and practical aspects of these networks and offers Python code implementations for each. The final chapter of the book introduces Transformers, a revolutionary model that has had a significant impact on natural language processing (NLP). This chapter provides you with a thorough understanding of how Transformers work and includes Python code implementations.

By the end of the book, you will be able to use deep learning to solve real-world problems.

What you will learn
Develop a comprehensive understanding of neural networks' key concepts and principles.
Gain proficiency in Python as you code and implement major deep-learning algorithms from scratch.
Build and implement predictive models using various neural networks
Learn how to use Transformers for complex NLP tasks
Explore techniques to enhance the performance of your deep learning models.

Who this book is for
This book is for anyone who is interested in a career in emerging technologies, such as artificial intelligence (AI), data analytics, machine learning, deep learning, and data science. It is a comprehensive guide that covers the fundamentals of these technologies, as well as the skills and knowledge that you need to succeed in this field.

Table of Contents
1. Python for Data Science
2. Real-World Challenges for Data Professionals in Converting Data Into Insights
3. Build a Neural Network-Based Predictive Model
4. Convolutional Neural Networks
5. Optical Character Recognition
6. Object Detection
7. Image Segmentation
8. Recurrent Neural Networks
9. Generative Adversarial Networks
10. Transformers

Wybrane bestsellery

BPB Publications - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.