Big Data and Hadoo - 2nd Edition Mayank Bhushan
- Autor:
- Mayank Bhushan
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 470
- Dostępne formaty:
-
ePubMobi
Czytaj fragment
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Big Data and Hadoo - 2nd Edition
Key Features
Learn Apache Hadoop ecosystem and its core components.
Discover advanced tools like Spark for real-time data processing.
Master the fundamentals of Big Data and its applications. Description
In today's data-driven world, harnessing the power of big data is no longer a luxury, but a necessity. This comprehensive guide, "Big Data and Hadoop," dives deep into the world of big data and equips you with the knowledge and skills you need to conquer even the most complex data landscapes.
Start with the fundamentals of big data, exploring its growing significance and diverse applications. You'll look into the heart of the Apache Hadoop ecosystem, mastering its core components like HDFS and MapReduce. We'll demystify NoSQL databases, introducing you to HBase and Cassandra as powerful alternatives to traditional databases.
Clarify the details of MapReduce programming with practical examples, and discover the power of PigLatin and HiveQL for efficient data analysis. Explore advanced tools like Spark, unlocking its potential for real-time data processing and analytics. Rounding out your knowledge, the book delves into practical applications, exploring real-world scenarios and research-based insights. By the end of this book, you'll emerge as a confident big data explorer, equipped to tackle any data challenge with expertise and precision. What you will learn
Gain a solid grasp of the fundamental concepts of big data.
Acquire a comprehensive understanding of HDFS, MapReduce, YARN, Spark, and related components.
Learn how to set up and configure Hadoop clusters to create scalable and reliable data processing environments.
Develop the expertise to design, code, and execute MapReduce jobs to process and analyze vast datasets efficiently.
Learn how to use Hadoop and related tools to perform advanced data analytics. Who this book is for
Whether you are a beginner or have some experience with big data. This book is for aspiring big data professionals, including data analysts, software developers, IT professionals, and students in computer science and related fields. Table of Contents
1. Big Data Introduction and Demand
2. NoSQL Data Management
3. MapReduce Technique
4. Basics of Hadoop
5. Hadoop Installation
6. MapReduce Applications
7. Hadoop Related Tools-I: HBase and Cassandra
8. Hadoop Related Tools-II: PigLatin and HiveQL
9. Practical and Research-based Topics
10. Spark
Learn Apache Hadoop ecosystem and its core components.
Discover advanced tools like Spark for real-time data processing.
Master the fundamentals of Big Data and its applications. Description
In today's data-driven world, harnessing the power of big data is no longer a luxury, but a necessity. This comprehensive guide, "Big Data and Hadoop," dives deep into the world of big data and equips you with the knowledge and skills you need to conquer even the most complex data landscapes.
Start with the fundamentals of big data, exploring its growing significance and diverse applications. You'll look into the heart of the Apache Hadoop ecosystem, mastering its core components like HDFS and MapReduce. We'll demystify NoSQL databases, introducing you to HBase and Cassandra as powerful alternatives to traditional databases.
Clarify the details of MapReduce programming with practical examples, and discover the power of PigLatin and HiveQL for efficient data analysis. Explore advanced tools like Spark, unlocking its potential for real-time data processing and analytics. Rounding out your knowledge, the book delves into practical applications, exploring real-world scenarios and research-based insights. By the end of this book, you'll emerge as a confident big data explorer, equipped to tackle any data challenge with expertise and precision. What you will learn
Gain a solid grasp of the fundamental concepts of big data.
Acquire a comprehensive understanding of HDFS, MapReduce, YARN, Spark, and related components.
Learn how to set up and configure Hadoop clusters to create scalable and reliable data processing environments.
Develop the expertise to design, code, and execute MapReduce jobs to process and analyze vast datasets efficiently.
Learn how to use Hadoop and related tools to perform advanced data analytics. Who this book is for
Whether you are a beginner or have some experience with big data. This book is for aspiring big data professionals, including data analysts, software developers, IT professionals, and students in computer science and related fields. Table of Contents
1. Big Data Introduction and Demand
2. NoSQL Data Management
3. MapReduce Technique
4. Basics of Hadoop
5. Hadoop Installation
6. MapReduce Applications
7. Hadoop Related Tools-I: HBase and Cassandra
8. Hadoop Related Tools-II: PigLatin and HiveQL
9. Practical and Research-based Topics
10. Spark
Wybrane bestsellery
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@ebookpoint.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Oceny i opinie klientów: Big Data and Hadoo - 2nd Edition Mayank Bhushan (0) Weryfikacja opinii następuje na podstawie historii zamowień na koncie Użytkownika umiejszczającego opinię.