ODBIERZ TWÓJ BONUS :: »

AWS SysOps Cookbook. Practical recipes to build, automate, and manage your AWS-based cloud environments - Second Edition Eric Z. Beard, Rowan Udell, Lucas Chan

Język publikacji: 1
AWS SysOps Cookbook. Practical recipes to build, automate, and manage your AWS-based cloud environments - Second Edition Eric Z. Beard, Rowan Udell, Lucas Chan - okladka książki

AWS SysOps Cookbook. Practical recipes to build, automate, and manage your AWS-based cloud environments - Second Edition Eric Z. Beard, Rowan Udell, Lucas Chan - okladka książki

Autorzy:
Eric Z. Beard, Rowan Udell, Lucas Chan
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
490
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook 29,90 zł najniższa cena z 30 dni

119,00 zł (-10%)
107,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

29,90 zł najniższa cena z 30 dni

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Prezent last minute w ebookpoint.pl
AWS is an on-demand remote computing service providing cloud infrastructure over the internet with storage, bandwidth, and customized support for APIs. This updated second edition will help you implement these services and efficiently administer your AWS environment.

You will start with the AWS fundamentals and then understand how to manage multiple accounts before setting up consolidated billing. The book will assist you in setting up reliable and fast hosting for static websites, sharing data between running instances and backing up data for compliance. By understanding how to use compute service, you will also discover how to achieve quick and consistent instance provisioning. You’ll then learn to provision storage volumes and autoscale an app server. Next, you’ll explore serverless development with AWS Lambda, and gain insights into using networking and database services such as Amazon Neptune. The later chapters will focus on management tools like AWS CloudFormation, and how to secure your cloud resources and estimate costs for your infrastructure. Finally, you’ll use the AWS well-architected framework to conduct a technology baseline review self-assessment and identify critical areas for improvement in the management and operation of your cloud-based workloads.

By the end of this book, you’ll have the skills to effectively administer your AWS environment.

Wybrane bestsellery

O autorach książki

Eric Z. Beard, a former United States Marine, has nearly two decades of experience in technology, leading diverse DevOps and solutions architecture teams. Eric is currently a manager at Amazon Web Services in Seattle, Washington, and holds nine AWS certifications.
Rowan Udell has been working in development and operations for 15 years. His travels have seen him work in start-ups and enterprises in the finance, education, and web industries in both Australia and Canada. He currently works as a Technical Director at Versent, an AWS Premier Consulting Partner, working with teams building cloud-native products on AWS. He specializes in serverless applications and architectures on AWS, and contributes actively in the AWS and serverless communities.
Lucas Chan has been working in tech since 1995 in a variety of development, systems admin, and DevOps roles. He is currently a senior consultant and engineer at Versent and was a technical director at Stax. He's been running production workloads on AWS for over 10 years. He's also a member of the APAC AWS warriors program and holds all five of the available AWS certifications.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Sposób płatności
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.