ODBIERZ TWÓJ BONUS :: »

Wnioskowanie i związki przyczynowe w Pythonie. Nowoczesne uczenie maszynowe z wykorzystaniem bibliotek DoWhy, EconML, PyTorch i nie tylko Aleksander Molak

Autor:
Aleksander Molak
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
6.0/6  Opinie: 2
Stron:
421
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment
Książka
87,20 zł 109,00 zł (-20%)
70,85 zł najniższa cena z 30 dni

Dodaj do koszyka Wysyłamy w 24h

Ebook
81,75 zł 109,00 zł (-25%)
54,50 zł najniższa cena z 30 dni

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Prezent last minute w ebookpoint.pl
Zostało Ci na świąteczne zamówienie opcje wysyłki »

W uczeniu maszynowym odkrywanie związków przyczynowych daje możliwości, jakich nie można uzyskać tradycyjnymi technikami statystycznymi. Najnowsze trendy w programowaniu pokazują, że przyczynowość staje się kluczowym zagadnieniem dla generatywnej sztucznej inteligencji. Niezbędna okazuje się więc znajomość grafów przyczynowych i zapytań konfrontacyjnych.

Dzięki tej książce łatwo przyswoisz teoretyczne podstawy i zaczniesz je płynnie wdrażać w rzeczywistych scenariuszach. Dowiesz się, w jaki sposób myślenie przyczynowe ułatwia rozwiązywanie problemów, i poznasz pojęcia Pearla, takie jak strukturalny model przyczynowy, interwencje, kontrfakty itp. Każde zagadnienie zostało dokładnie wyjaśnione i opatrzone zbiorem praktycznych ćwiczeń z kodem w Pythonie. Nauczysz się także implementować poszczególne modele i zrozumiesz, czym się kierować przy wyborze technik i algorytmów do rozwiązywania konkretnych scenariuszy przyczynowych. To przewodnik, który docenią szczególnie inżynierowie uczenia maszynowego i analitycy danych.

W książce:

  • wnioskowanie związków przyczynowych
  • budowa i działanie strukturalnych modeli przyczynowych
  • czteroetapowy proces wnioskowania związków przyczynowych w Pythonie
  • techniki modelowania efektu interwencji
  • nowoczesne metody odkrywania związków przyczynowych za pomocą Pythona
  • korzystanie z wnioskowania związków przyczynowych

Przyczyna i skutek, nic więcej. Pomyłki jako takie nie istnieją...

Jose Antonio Cotrina, hiszpański pisarz science fiction

Wybrane bestsellery

O autorze książki

Aleksander Molak jest niezależnym badaczem i konsultantem w dziedzinie uczenia maszynowego. Współpracował z licznymi firmami w Europie, USA i Izraelu, gdzie uczestniczył w tworzeniu wielkoskalowych systemów uczenia maszynowego. Jest też współzałożycielem firmy Lespire.io, dostawcy szkoleń z zakresu sztucznej inteligencji dla zespołów korporacyjnych. 

Helion - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Książka
87,20 zł
Dodaj do koszyka
Ebook
81,75 zł
Dodaj do koszyka
Płatności obsługuje:
Ikona płatności Apple Pay Ikona płatności Bank PEKAO S.A. Ikona płatności Bank Pocztowy Ikona płatności Banki Spółdzielcze Ikona płatności BLIK Ikona płatności Crédit Agricole e-przelew Ikona płatności Google Pay Ikona płatności ING Bank Śląski Ikona płatności Inteligo Ikona płatności iPKO Ikona płatności mBank Ikona płatności Millennium Ikona płatności Paypal Ikona płatności PayPo | PayU Płacę później Ikona płatności PayU Płacę później Ikona płatności Plus Bank Ikona płatności Płacę z Citi Handlowy Ikona płatności Płać z BOŚ Ikona płatności Płatność online kartą płatniczą Ikona płatności Santander Ikona płatności Visa Mobile