ODBIERZ TWÓJ BONUS :: »

Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch Adi Polak

Autor:
Adi Polak
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
3.0/6  Opinie: 1
Stron:
264
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment
Książka
59,92 zł 74,90 zł (-20%)
48,69 zł najniższa cena z 30 dni

Dodaj do koszyka Wysyłamy w 24h

Ebook
56,18 zł 74,90 zł (-25%)
37,45 zł najniższa cena z 30 dni

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Prezent last minute w ebookpoint.pl
Zostało Ci na świąteczne zamówienie opcje wysyłki »

Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ― nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.

Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym.

Najciekawsze zagadnienia:

  • cykl życia uczenia maszynowego i MLflow
  • inżynieria cech i przetwarzanie wstępne za pomocą Sparka
  • szkolenie modelu i budowa potoku
  • budowa systemu danych z wykorzystaniem uczenia głębokiego
  • praca TensorFlow w trybie rozproszonym
  • skalowanie systemu i tworzenie jego wewnętrznej architektury

Właśnie takiej książki społeczność Sparka wyczekuje od dekady!

Andy Petrella, autor książki Fundamentals of Data Observability

Wybrane bestsellery

O autorze książki

Adi Polak jest doświadczoną inżynierką, wiceprezeską do spraw programistów w firmie Treeverse, członkinią wielu grup eksperckich. Bierze udział w organizowaniu takich konferencji jak Data + AI Summit by Databricks, Current by Confluent i Scale by the Bay. Doświadczenie w uczeniu maszynowym zdobywała, prowadząc badania dla wielu firm z listy Fortune 500.

Helion - inne książki

Zamknij

Przenieś na półkę
Dodano produkt na półkę
Usunięto produkt z półki
Przeniesiono produkt do archiwum
Przeniesiono produkt do biblioteki

Zamknij

Wybierz metodę płatności

Książka
59,92 zł
Dodaj do koszyka
Ebook
56,18 zł
Dodaj do koszyka
Płatności obsługuje:
Ikona płatności Apple Pay Ikona płatności Bank PEKAO S.A. Ikona płatności Bank Pocztowy Ikona płatności Banki Spółdzielcze Ikona płatności BLIK Ikona płatności Crédit Agricole e-przelew Ikona płatności Google Pay Ikona płatności ING Bank Śląski Ikona płatności Inteligo Ikona płatności iPKO Ikona płatności mBank Ikona płatności Millennium Ikona płatności Paypal Ikona płatności PayPo | PayU Płacę później Ikona płatności PayU Płacę później Ikona płatności Plus Bank Ikona płatności Płacę z Citi Handlowy Ikona płatności Płać z BOŚ Ikona płatności Płatność online kartą płatniczą Ikona płatności Santander Ikona płatności Visa Mobile