Logic Sniffer Specification
(Demon Core FPGA)

Version 1.03

Copyright © 2011-2012 lan Davis

This document is free software; you can redistabtuiand/or modify it under the terms of the
GNU General Public License as published by the Biaféwvare Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that It beé useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILYTor FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License foerdetails.

You should have received a copy of the GNU Gerfeualic License along with this document;
if not, write to the Free Software Foundation, Jng1 Franklin St, Fifth Floor, Boston, MA 02110S4

Logic Sniffer Demon Core FPGA Specification

Table of Contents

R Nl I (@ T 6 L @ 1 O PR 4
1.1 ADVANCED TRIGGER.....ittttttttttuutuuuuiaaaaaaeeeeeeaetetesseeaaaeeeesssssssba e s s e eeeeeeeaeeeeennnnnres 5.

2 BACKGROUND ..ottt sttt st e b sbe st e sbe et e e neesbeebesneesaeenee e 6
2.1 P G A .. e e e e ettt e e e eee e nrrrraaan 6
2.2 THE DATAPATH .ttt e ettt ettt e et e et mee e e et eeat e e e e e eetba e e eaeeennnn e aeeeeennnsnnn 7
2.3 THE SUMP FROTOCOL. ..uuiiiiiiieeeiei ettt e e e e e e e e ettt e e e e e e e eeees 8

231 Short Commands (0ne byte COMMANTS) .. coummmmmmeeeeeeeeiiieeiiiieiiiiiiiiee s 8
2.3.2 Long Commands (five byte commands).....eeeeeeeiiiiiieieeeeeeeeesseeeeennnnnnnn.l1

3 TRIGGER TERMS ...ttt et ettt sae et nns 15
3.1 FROGRAMMING LOOKUP TABLES. ... tttteeeeeeeeeeteeeeeetitiiss s e e e e eeeeaes e e e e e e e eeeeeensennnnnnnnns 16
3.2 EXAMPLE (TRIGGERTERM INITIALIZATION)...oiiiiiiiiiieeeiiiiiiiiiasee s e e e e e e e eeeeeeeeeeessnnnnnns 16

4 RANGE DETECTORS ... oottt s nn e 17
4.1 CGOMPLEX RANGE COMPARES......citttttiaettieitiaaaeeeeetaa e e e e e essmmm s e e e e eesannaaaeseesnnnnaaaeas 18
4.2 FREPARETARGET VALUES FORCOMPARATORcccititiiiiiritunniiiaaaaeaeeeeeeeeseseeeeeeeeeees 18
4.3 RANGE COMPARE LUT CHAINS ...ttt ettt e ettt e e e eeemma e e e s e e e e e e e eeennnns 18
4.4 EXAMPLE (RANGE DETECTINITIALIZATION) ..uuutuurirneeeeeeieeeeeeeaeeaeeessssassssensnssnnssseeees 19

5 EDGE DETECTORS.... ..ottt sttt sre et esae b eneenns 20
5.1 EXAMPLE (EDGE DETECTORINITIALIZATION) w.vutttiiiiiirieeeeieeeeeeaeeeessssesssssssnnssssssnnees 21

B TIMERS. . e bbbt ettt b et aeetesaeenre s 22
6.1 EXAMPLE (TIMER INITIALIZATION) uuuiiieeeeeeeeeseeeeeeeeettetees s e e e e e e e e e e e e e e eeeeeeennnsnnnnnnnnas 22

7T TRIGGER SUMS ... ottt sttt b et ae e s beeeesneenne s 23
7.1 TRIGGERSUM INPUTS. .. iiiiiiiiiiiititiiiae s e e e e e e e e e et et eeeeeeeneeeees st bbb s s e e e e e e e e e e eeeeenennnnnees 23
7.2 TRIGGERSUM OPERATIONS.ettttiaeeeeettuaaeaeeesttaaaeeeeessnaaasaeeeesssnnaaaeeessnnaaeeeeesnnns 24
7.3 TRIGGERINVERTINGuuiuiiiiie e e eeee ettt e e e e e e e e e e e ee e e e e b b as 25
7.4 EXAMPLE (TRIGGERSUM INITIALIZATION) tttttutuuaaaaaaeeeeeeeeeeeeeeeesennnnnnnnnnsaaaeaeeaeasaeaes 26

8 TRIGGER SEQUENCE STATESo s 27
8.1 EXAMPLE (TRIGGERSEQUENCEINITIALIZATION) ceiiiieeeeeeee ettt e e e e 28

APPENDIX A - ADVANCED TRIGGER CONFIG REGISTERS........cccooiiiiieeee 29

APPENDIX B - EXAMPLE CODE ..ottt et s 30

GNU GENERAL PUBLIC LICENSE ...ttt 34

January 1, 2012 2 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

Table of Figqures

Figure 1 - Block Diagram 4
Figure 2 - Logic Block 6
Figure 3 - FPGA Layout 6
Figure 4 - AND gate equivalent 6
Figure5 - Datapath Diagram 7
Figure 6 - Basic Trigger Serial Mode 14
Figure 7 - Masked Compare 15
Figure 8 - Truth Table 15
Figure9 - Trigger Term LUT 15
Figure 10 - Initialize Trigger Term LUT Values 16
Figure 11 - Carry Look Ahead Adder 17
Figure 12 - Carry Look Ahead Comparator 17
Figure 13 - Range LUT Organization 18
Figure 14 - Initialize Range Detector LUT Values 19
Figure 15 - Edge Detector LUT 20
Figure 16 - Initialize Edge Detector LUT Values 21
Figure 17 - Timer 22
Figure 18 - Initialize Timer Values 22
Figure 19 - Combination Trigger Sum 23
Figure 20 - Pair LUT Operations 24
Figure 21 - Mid LUT Operations 24
Figure 22 - Final LUT Operations 24
Figure 23 - Initialize Trigger Sum 26
Figure 24 - Example Sequence Level 27
Figure 25 - Trigger Sequencer Sate Machine 27
Figure 26 - Initialize Trigger Sequence 28
Revision History
Feb 23, 2011 - Rev 1.01 - Initial Release.
May 7, 2011 - Rev 1.02 - Clarified various pointsfdems (much thanks to flubberlab).
Jan 1, 2012 - Rev 1.03 - Added section on implemgnverted trigger inputs.
January 1, 2012 3 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

1 Introduction

The Open Logic Sniffer Demon Core FPGA offers mahthe features found in an HP 16500 / 16550 tinhirzgc
analyzer. Combined with the OLS's small sizédtds a very potent little tool.

Buffered
Probe Header
{5V tolerant)

0
<
o
©
>
8]
-

Unbuffered 110
(Wing) Header
Feature list: (max. 3.3V tolerant)

* SUMP logic analyzer client compatible.

* 16 pin buffered probe header (5V tolerant)

» 16 pin unbuffered (wing) header (3.3V tolerant)

* 24K samples (8 bit captures)

* Maximum 200Mhz sample rate (using demux mode)

* USB interface, USB powered, & USB upgradeable.

» Basic/Legacy trigger with four level parallel orisétarget matching

» Advanced trigger with 16 sequence states, 10 patt@tches, two range checkers, two edge detectors &
two timers (10ns resolution, 600 second range).

* RLE compression of captures.

The Logic Sniffer was developed as a collaboraltietween the Gadget Factory (http://www.gadgetfgatet) &
Dangerous Prototypes.(http://dangerousprototypeg.co

PR Aurm nd Trigger

o 1.2V =x,
= i z =
Trigger_ 0w =
X
Ch_Out 1
i
5
SR % feme| 1 | 8
s vis s Tod Busttor [gg
90 TRF 20550
— el o Wl I =
UART wsaRTE - Spartan-3E 4
Hedes o Ll
Swolt toesant ™ leos . Ciata 15 =E
e EseRTe i 2
- s
g mp
E =
E01 Esa_Clock_In =
=¥ [icse ROMISF ITAG i 5%
Hoadar Heador Haader Ed Tnggetln E H

Figure 1 - Block Diagram

January 1, 2012 4 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

1.1 Advanced Trigger

The advanced trigger offers many features fourshillP16500 / 16550 timing logic analyzer. It offé6
sequence levels with two way branching (a prograblenstate machine), ten pattern value comparigamsrange
checks, two edge checks, and two counter/timers.

There are several different modules within the aded trigger, each needing its own spin on condiion. These

Trigger Terms. Terms perform the actual bitwissssked pattern comparisons on the 32-bit incoming
data. There are ten terms. Each one needsite28f lsonfiguration data.

Trigger Range Detectors. The two range detetbotsfor values falling between a lower & upper [32-
limit. Each range check uses two 32-bit magnitcmimparisons., one for the upper compare, onéhéor t
lower. A match means: “upper >= indata >= lowerEach range detector needs 512 bits of configura
data.

Trigger Edge Detectors. The two edge detectongppene sampled input against a delayed version.
Rising edges, falling edges, or both, or neithertbas be detected. Each needs 256 bits of amatign
data.

Trigger Timers. Timers are started/stopped uedatrol of the trigger sequence states. Therévare
timers, each needing a 36 bit limit value. Tlneetis have a range from 10ns to over 11 minutes.

Trigger Sums. These combine the results of iggdr terms, range comparisons, edge checks, iaed ti
checks. There are 11 logic units programmabfeetform any logic function. Examples are
AND/NAND/OR/NOR/XOR/NXOR. The logic units are mined in a tree structure, and combine/sum
all trigger sources down to a match/miss signdler€ are three trigger sums per trigger state,1énd
trigger states, totaling 48 sums. Each sum ne@8dits of configuration data.

Trigger Sequence States. Each state is guidéaelnesults of three trigger sums (see above}helfhit”
trigger sum matches, for a specified number of oenices, the FSM advances. A hit also contras if
timer is started/stopped/cleared. If the “elsgger sum matches, the FSM branches to the “alsdg.
Data capture is controlled by the “capture” triggem — if it matches, a sample is taken. If twn not.
Each state takes 32 bits of configuration.

Each module will be described in detail in thedaling chapters.

January 1, 2012 5 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

2 Background

A little background to help put things in context..
2.1 EPGA’s

The FPGA (field programmable gate array) is vemfuisfor creating custom hardware. They can imgem
anything from simple logic up to entire computerfo accomplish this, an fpga contains large nusbétiny
lookup tables and flip-flops as building blockspusually some larger memories (SRAM’Ss).

—
A0 —|
A1—]
A2 —
A3 —]

D al—p
Flip Flop

[T

L[]

CLK

; _ i 7 Logic Blocks
Figure2 - Logic Block uo\? (LUT + Flops)
Add some 1I/O pins for talking to the outside wotls lots of ! -/
configurable wires to connect everything, and yauehan FPGA. ofle oo ofd
oo e e oo
The lookup tables are the interesting piece, am inly 16 bits of ollo oo alle
data. They have four inputs (the address), apubuand some config i]
pins. Normally they are configured to form logi&ny four-input el ol el Bl
function can squeeze in there. EgE e
_ _ D E 0w
For example, a four input AND gate. Load LUT asles O to 14 with /D/' Ararars Ei'\
all zeros, and set address 15 to one. Now ihplits are set, you get a T T
P YOUO 2 ran HIE MR M EE B E

one on output -- otherwise zero. Just like arDAgdte. e -

Figure 3 - FPGA Layout

—
A0 —
Al —]
A2 —
A3 —]

D al—p
Flip Flop

Heleleleleleleetettetetetele

CLK

Figure 4 - AND gate equivalent

In the case of a logic analyzer, even more usefuttions are possible. For example, a triggercéean four bits
of sampled data. The LUT allows easy matchingrof pattern.

LUT's are normally programmed serially when the PR®wers up. Think shift register. However, tlgayn also
be selectively changed during runtime.

January 1, 2012 6 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

2.2 The Datapath

The Logic Sniffer is composed of several main bfockMost are
concerned with the data path (see right). Inditasving thin lines
are control signals. Thick lines are the daté.pat

The “sync module” captures input data using the sample clock.
The sample clock can either be the internal 100Mference
clock, or supplied from an external source.

The “async fifo” transfers the captured input to the rest of hgaf
If the sample clock & internal reference clock tally unrelated,
the fifo avoids timing problems.

The “sampler modul€’ is what implements the “sampling rate”.
Assume the sample clock is using the 100Mhz reterenif you
want a 10Mhz sample rate, the sampler forwardsyaesth valid
capture. For 1Mhz, every hundredth valid captet....

The ‘triggers’ look for patterns. They control what ultimatejgts
stored in SRAM -- with thecapture” signals -- and tell the
controller when a trigger hit occurs. The basgger captures
everything always. The advanced trigger letslyeumore
selective.

The “delay fifo” aligns its output to the capture/run trigger autp
The trigger modules take a few clocks to evaluaitegs. For a
trigger “capture” to work, the input to the nexatet must match.

The “data align” module removes gaps within the input data caused
by disabled groups. If you decide to disable gsod& 2, the

aligner shifts the remaining groups down to fikthap. This
simplifies things later.

The “RLE encoder” looks for repeat captures. If found, counts are
stored instead of repeats of unchanging data.s ddm greatly
increase the effective storage capacity.

The “controller” is what decides how much gets captured, and
when to send results to the client on your PC.

The “SRAM interface” handles saving & fetching captured data to
& from the SRAM memory.

The “SPI interface” uploads the captures serially to the client.
Only valid data is sent. Gaps due to disablediggare filtered
out.

A few remaining blocks aren’t shown here. Theounfid SPI
interface for receiving commands, the command deic&dlags
register.

sample
clock

arm

\/

Sync Module

A l
v

Async FIFO

'

Sampler
Module

adv

R

trigger
(advanced)

Delay
FIFO

capture

.

arm

‘ befic

trigger
(basic)

Data Align
Module

i

!

RLE
Encoder

!

Controller

4

capture

run

A

rd wr

vy

SRAM
Interface

mask

VY

SPI Interface

\

SRAM

Figure5 - Datapath Diagram

January 1, 2012 7 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

2.3 The SUMP Protocol

The SUMP communication protocol assumes a starl8&82 port connection. Although the Logic Sniffer
USB based it emulates a very fast serial port filoenperspective of the PC.

When sending captured data the analyzer sendssbamhtiguous block of data. Disabled channelsiatesent
however. First byte sent corresponds to sampted’t (assuming channel 0 isn't disabled). imost recently
captured data is returned first (ie: data is seiwlient in reverse order). If Demux mode islded, group 2 and 3
inputs are ignored. Channel group 0 and 1 inaregsnstead captured (if enabled) twice per samplee each
clock edge - and returned as a pair of bytes pmrmr

The following list documents the commands undedtopthe Logic Sniffer FPGA.

2.3.1 Short Commands (one byte commands)

0x00 - Reset

Reset the analyzer. Send at least five timessare FPGA in a known state. Clears any preMang commands
that might have gotten stuck. The reset commandld be issued prior to each Arm command (bagjafig or
advanced), to ensure previous captures/triggersleaged.

0x01 - Arm Basic/Legacy Trigger

Arm the basic trigger. Sampling begins immediateDnce the trigger fires, the controller waits fdelay count”
additional samples before returning captured datdi¢nt.

0x02 - Query ID

The device responds with four bytes. CurrentlyA$' to maintain backwards compatible SUMP proteaaltput
LSB first. ie: "1", "A", "L", "S"

January 1, 2012 8 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

0x04 - Query Meta Data
The device responds with a variable length bloclaih composed of one or more tokens + associated d

* Token O denotes end of meta data

* Tokens 0x01 to Ox1F are followed by a null term@bstring (UTF-8 encoded).
* Tokens 0x20 to Ox3F are followed by a 32-bit unsijinteger (MSB first).

» Tokens 0x40 to Ox5F are followed by a 8-bit unsiyimgeger.

» All other token ranges are reserved.

The following fields are currently defined:

Token Description FPGA Currently Returns
0x00 | End of Meta Data 0

0x01 | Device Name "Open Logic Sniffer v1.01'
0x02 | Version of FPGA firmware "3.0"

0x03 | Ancillary Version (PIC firmware) | -
0x20 | Number of Probes -
0x21 | Sample memory available (bytes) | 24576
0x22 | Dynamic memory available (bytes | -
0x23 | Maximum sample rate (Hz) 200000000

0x24 | Protocol version -
0x25 | Capability Flags 0x0000001F

0x40 | Number of Probes (short version) | 32
0x41 | Protocol version (short version) 2

Clients should accept data from either long or shersions of a meta field, if both are possible.

The Capability Flags provide a bitmask indicatingitable FPGA features. Moving forward, this skiblelp
decouple the fpga from a needing a specific versialient (or visa versa).

Bit O - Basic Trigger available.

Bit 1 - Advanced Trigger available.

Bit 2 - RLE Encoding available (see flag register).

Bit 3 - Extra RLE Encoding modes available (seg fiegister).

Bit 4 - State capture mode available (see flagsteg

Bit 5 - Finish Now command available.

Bit 6 - Query Input Data command available.

Bit 7 - Query Capture State command available.

Bit 8 - Return Capture Data command, and manudlicapnode available (see flag register).
Bits 31-9 - reserved

0x05 - Finish Now (disable RLE mode)

Turns off RLE mode specified in the flags regigtsre 0x82 command below). In RLE mode, the aealgan sit
forever if inputs aren't changing. This gives E@ client application an opportunity to finishapture on demand.

Finish now also aborts the advanced trigger, &derdata capture to quickly fill the buffer & engptsre.

0x06 - Query Input Data
The device responds with four bytes. Gives a dmatps the current logic analyzer input bits.

January 1, 2012 9 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

0x07 - Poll/Query Analyzer State
Returns capture state data. Uses same encodingtagiata, with tokens & parameters. ie:

* Token O denotes end of meta data

* Tokens 0x01 to Ox1F are followed by a null term@bstring (UTF-8 encoded).
* Tokens 0x20 to Ox3F are followed by a 32-bit unsijinteger (MSB first).

» Tokens 0x40 to Ox5F are followed by a 8-bit unsiyimgeger.

» All other token ranges are reserved.

Token Description

0x00 | End of Poll Data

0x30 | Flags[31:0]

0x31 | Capture Depth

0x32 | Trigger Position

0x50 | Basic Trigger Level (0 to 3)

0x51 | Advanced Trigger Level (0 to 15)

Flags:
bit 0 - Analyzer armed.
bit 1 - Capturing pretrigger data (used in tighmode only).
bit 2 - Capture complete.
bit 3 - Capture cancelled.
bit 4 - Basic trigger active. Basic triggerdey0x50 field) valid.
bit 5 - Basic trigger has fired.
bit 6 - Advanced trigger active. Advancedgeglevel (0x51 field) valid.
bit 7 - Advance trigger has fired.
bits 31-8 - reserved

0x08 - Return Capture Data

If the fpga is in "manual capture mode" (see flegister), this command returns any capture datiaetalient. This
command also cancels any active capture. Notly @xa captured since the fpga was armed is returnif there
were only 8 captures, the client only gets 8 cagstur Client should query capture state to olitajger position.

OxOF - Arm Advanced Trigger

Arm the advanced trigger. Conditional capturingder control of trigger sequencer) begins immedifat Once
trigger fires, the controller waits for "delay cduadditional samples before returning capturec datclient.

0x11 - XON

Depreciated. On a serial port, this would paugput when FPGA was returning captured data. e ignored
by the FPGA.

0x13 - XOFF

Depreciated. On a serial port, this would resomput when FPGA was returning captured data. ediisr
ignored by the FPGA.

January 1, 2012 10 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

2.3.2 Long Commands (five byte commands)

0x80 - Set Sample Rate

The Logic Sniffer samples at rates lower than #ierence clock by usingdivisor-count. Every given number of
clocks, a sample is accepted. To set the saraethe divisor count is computed as follows:

divider = (clock / sample-rate) - 1

0x80 LSB MSB

1305000000000 vy vy D e e e D g g g g x
7 6 5 4 3 2 1 015141312 11 10 9 8 23 22 21 20 19 18 17 16
—

Di\;i(der

0x81 - Set Read Count & Delay Count

Theread-count specifies the number of samples (divided by foait)e returned to the client on your PC. The
delay-count is the number of samples (divided by four) to oaptafter- the basic or advanced trigger fires.
Samples are defined as one byte per each enalpletgroup.

A read-count larger than théelay-count returns captures from before the trigger. Suehtpgger captures are
only valid if the device was running long enouglfobbe the trigger fired. ie: a trigger that firesmediately could
return garbage.

0x81 LSB MSB LSB MSB

Lpogoq0q00000 vy v e Do T

7T 6 5 4 3 21 0151413121110 9% 87 6 5 4 3 2 1015141312 1110 9 8
- A -

Read Count Delayv Count

January 1, 2012 11 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

0x82 - Set Flags
The flags register configures a whole range of elianeous Logic Sniffer features including:

Demux Mode. Double-Data-Rate Capturing. Captgresps O & 1 inputs on both edges of internal
reference clock (ie: two samples per clock per Ethgroup). Not compatible with Noise Filter mode
Should only be used with max sample-rate (ie: sé$a to zero -- see Ox80 above). 1= Enabled.
Noise Filter Mode. Reduces occurrence of glitaresnputs. 1 = Enabled.

Disabled Channel Groups.

Don't capture speciiedps of input data. Input channels 0-7, 8-B523,

and 24-31 correspond to Channel Groups 0, 1, 23ardpectively. If Demux mode is enabled, then
Group 2 and 3 settings must equal Group 0 andtihget 1 = Disable group.

External Clock Source. Use external clock for siamgp If disabled, use internal 100Mhz referetmk
instead. When enabled the Logic Sniffer is kakién "state mode" (sample synchronous with ifput
verses "timing mode" (asynchronous internal refeeesiock). 1 = Enabled.

Inverted External Capture Clock. Capture dataatlinfy edge of sample clock when using externatklo
Enable RLE compression mode. Duplicate sampkes@mpressed into counts. Most significant bit of
sample replaced with "rle-flag”, and is thus nogenavailable. Requires client support to decode.
value is stored, followed by a count of repea@ount's are exclusive of value, so <value><count=7>

means there are 8 samples.

Swap Number Scheme. Swap upper 16 bits & lowssitstof input in capture buffer. 1 = Enabled.
External test mode. Output 16-bit test pattercapture pins 31:16. 1 = Enabled.

Internal test mode. Supply internally generatedi32est pattern to capture buffer. Input dateyiored.
State capture mode. If 1, enables trigger sequexcrolled data capturing.

Extra RLE compression modes.

For input samplastwthange infrequently, rle-count's can fill to

maximum. The Logic Sniffer then stores that catustarts counting again. The extra modes coritoov
often another <value> is stored (even if it hash&nged):

Mode Description

0&1 Issue <value> & <rle-count> as pairs.

Backdgacompatible.

2 Periodic. <values> reissued approximately 286 <rle-count> fields.

3 Unlimited.

<values> can be followed by unliedthumbers of <rle-counts>.

0x82

Use inverted capture clock (capture on falling edge)
External clock source
Disabled channel groups
Noise filter

I— Demux Mode (DDR sample mode)

1700070,00 ;107161543321 10][1514 % g% 11107818] pxpx e pxpxpxpx [xpe e x g xpx x|

Flags Register

=

Enable RLE compression

Swap number scheme (swap upper/lower 16 bits)
External test mode (output pattern on bits 31:186)
Internal test pattern mode

Extra RLE compression modes

January 1, 2012

12 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

Ox9E - Advanced Trigger Configuration Select

The advanced trigger needs a lot of configuringdBirent selectors), so it seems prudent to pl®w separate
address space to cover programming the 11000+g-bitf. This register selects what to configarthe
advanced trigger. Please see Appendix A forithef advanced trigger registers.

Ox9E
1000 1yt ty Ty Oy oy oy XXX xR X X KX R X XX XK XX R KX R X
7 65 4 3 2 1 0

Trigger Select

Ox9F - Advanced Trigger Write Data Register

Thetrigger-data register loads the LUT chains of trigger termsgechecks, edge detects & summing terms. Itis
also used to write the sequence states & timet hegjisters.

O0x9F LSB MSB

I T
7 6 5 4 3 2 1 0151413 12 1110 9@ 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

“ 4

Trigger Data

0xCO0/C4/C8/CC - Set Basic Trigger Mask

Thetrigger-mask controls which basitrigger-value bits participate in a compare. A mask bit setdm causes the
corresponding trigger-value bit to be ignored.th# entire mask is zero, the trigger will matckergthing always.

0xC0/C4/C8/CC LSB MSB

Latyoqoyxyxqopofy vy vy v b v v e v v vy e by
7 65 4 3 2 1 015 1413 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

“ 4

Trigger Mask

0xC1/C5/C9/CD - Set Basic Trigger Value

Thetarget-value is what the fpga looks for in the sampled inpuadaEach bit corresponds directly 1:1 with the
captured input data. Note: Disabled groups jgéitticipate in a trigger. If you want to exclualéisabled group,
then be sure to set the trigger mask accordingly.

NOTE: The FPGA requires trigger masks & values be amitback-to-back. ie: Write the mask, then the e/allor
trigger 0. Then the mask/value for trigger 1,.etcThe basic triggers use the same LUT based ammpechanism
as the advanced triggers. For backwards compitilai widget converts the mask/value pairs irddad LUT
chains automatically for the basic trigger.

O0xC1/C5/C9/CD LSB MSB

R T T T
7 6 5 4 3 2 1 015 141312 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

“ -

Trigger Target Value

January 1, 2012 13 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

0xC2/C6/CAICE - Set Basic Trigger Configuration
Writing this register configures the selected basgger stage. There are various fields ava@dbt customizing

the operation of the trigger:

» Stage Delay. If a trigger match occurs, the actibthe stage is delayed by number of samples.

» Serial Mode. If enabled, trigger operates agialgeigger.
» Serial Channel. In serial mode, select which inguatto treat as serial channel (0 to 31).

» Level. Trigger level at which current stage wildome active.
» Start. Tell controller the basic trigger has fired

0xC2/C6/CAICE

LSB

MSB

1 = Serial Mode.

Level 0 means activate immediately.

EFEIEEN RN

Lo by I3y tyogxgxg g Ixgxgxgxy gogx 4|

765 4 3 2 1 0151413121110 8 8 2322 21 2019 18 17

Serial Mode:

Stage Delay

Serial Mode
Serial Channel

16 31
S
Level

30 29 28 27 26 25 24

In serial mode, a basic triggers stage monitorg ardingle sampled input bit, selected with teeri'al-channel".
The selected bit is fed into a serial-to-paralléftsegister. Thus the last 32 samples of alsiibi can be
evaluated using the normal masked compare logic.

To be effective, you should use an external clockerial mode. Otherwise it's very difficult trefict exactly
when samples are taken & added to the shift regis&po for example, when monitoring a SPI bustbeeSPI clock

for capturing.

MSB

Serial to Parallel
Shift Register

Serial

Channel Select

LSB
[TTTTTTTITTTTTTT jee—og

[=]

Bit 31

A 32bits

Bit0

MUX

w
=

Trigger Levels:

The basic trigger has a simple level counter. gy trigger stage matches something, the leugitds

Figure6 - Basic Trigger Serial Mode

incremented. When the level count matches angst@gesttigger-level”, the stage becomes active. Thus you
can search for a simple sequence of events.

ie: Setup trigger O to start immediately, trigger& 2 to start on level 1, and trigger 3 to startievel 2. When

trigger 0 matches, both triggers 1 & 2 activaM/hen either of them matches, trigger 3 activates.

January 1, 2012

14 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

3 Trigger Terms

A trigger term is pretty simple. It compares kbgic analyzer input against a target. If theuihmatches the
target, it signals a hit. Trigger terms work #agne in both basic & advanced triggers.

To make things a little more useful, the fpga aspports masking (or ignoring) parts of the inpdthe mask
determines which bits must match, so you only camplzem & nothing else.

As shown below, the compare is done with an XNORI(esive inverted or), which goes high when bothuits
match. Masking is done by an AND gate.

Input

Input

XNOR _
AND Hit Target AND Hit

Target _/ _/
Mask Mask

Figure7 - Masked Compare

To implement something like this normally requifieps to hold the

target, flops to hold the mask, and logic for tHéOR & AND gates. Mask | Input | Target | Hit
So around 64 flops plus 32 logic blocks.)) 9)
0 1 0 0
However, a better way exists. In an fpga, LUES bandle everything. 9 5 5 9
The 32-bit target & mask values, and logic areeattoded directly into 1 0 1 0
‘ 1 1 0 0
only eight LUT's. 1 1 1 1

Figure8 - Truth Table
Quite a savings, but there is a downside. Progiamthe LUT is non- g

trivial.

The "complexity”" of the masked compare doesn'twaya- its simply —
transferred elsewhere. Thus in the advanceddrjdge eight LUT's -

need 128 bits of configuration supplied by thertlie] R
. . INDATA0 ——|

The LUT memory is programmed with the -resultsaahasked INDATAT ——|

compare. The target & mask are known, and thetisample is one of INDATAZ —|__| e a —

sixteen possible values. INDATA3 ——| Fiip Flop

Thus we simply run through all combinations in atha ie: —
LUT address of: (0 LK ——

0 stores result A value) & mask)=
LUT aggr‘ess 1 stores resu}t 0112: El A va}ueg & masB:
LUT address 2 stores result of: 2 A value) & mask)= . .
LUT address 3 stores result of: (3 A value) & mask)= Figure9- Trigger Term LUT
LUT address 4 stores result of: (4 A value) & mask)=

etc..

gl
OOOOO

For each of the eight LUT's, the above is repeaidddifferent 4 bit chunks of value & mask.

January 1, 2012 15 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

3.1 Programming Lookup Tables

To enable easier LUT programming, the fpga contaibsilt in parallel-to-serial converter. You gipwrite a
long SUMP command to the chain address. Not&WMP protocol dictates the least significant datte be
output first.

O0x9F LSB MSB

Looyoyty gty by vy v v b v v e v by e by oy
7 6 5 4 3 2 1 0151413 12 1110 9@ 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

. 4

Trigger Data

Once the fpga receives the long command, the aytesrganized MSB first (bits 31 downto 0), anchtkerially
shifted into the LUT chain.

config data
LUT MSB & LSB
Serial = P U L g e]
Data Bit 31 Bit 0

Some of the advanced trigger modules are quite agmd need multiple writes to fully load their Tl¢hains.
Chains vary in length up to 512 bits.

3.2 Example (Trigger Term Initialization)

#define write_select(value) write_long_command (Ox9E, value)
#define write_chain(value) write_long_command (0x9F, value)

void write_term (int term_number, unsigned int target, unsigned int mask)

unsigned int bitmask=1;

unsigned int lutvalue0=0;
unsigned int lutvaluel=0;
unsigned int lutvalue2=0;
unsigned int lutvalue3=0;

for (int i=0; 1i<16; i=i+1) {
if (((i A (target & OxF)) & (mask & OxF))==0) TutvalueO |= bitmask;
if (((i A ((target>>4) & 0xF)) & ((mask>>4) & OxF))==0) lutvalueO |= (bitmask<<16);
if (((i A ((target>>8) & O0xF)) & ((mask>>8) & OxF))==0) lutvaluel |= bitmask;
if (((i A ((target>>12) & O0xF)) & ((mask>>12) & O0xF))==0) Tutvaluel |= (bitmask<<16);
if (((i A ((target>>16) & OxF)) & ((mask>>16) & OxF))==0) lutvalue2 |= bitmask;
if (((i A ((target>>20) & 0xF)) & ((mask>>20) & O0xF))==0) Tutvalue2 |= (bitmask<<16);
if (((i A ((target>>24) & 0xF)) & ((mask>>24) & OxF))==0) lutvalue3 |= bitmask;
if (i A ((target>>28) & O0xF)) & ((mask>>28) & 0xF))==0) Tutvalue3 |= (bitmask<<16);
; bitmask <<= 1;

// Write data into LUT serial chain. MSB must goes in first. Total of 128 bits.
write_select (0x20 + (term_number%10));

write_chain (lutvalue3);

write_chain (lutvalue2);

write_chain (lutvaluel);

write_chain (lutvalueO);

Figure 10 - Initialize Trigger Term LUT Values

January 1, 2012 16 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

4 Range Detectors

The advanced trigger supports detecting when sahgdta falls within a range of values. ie: if #@nple is
between a lower limit & upper limit. ie:

hit = (upper-limit >= sample) && (sample >= lower-limit)

So we need magnitude comparators. In hardwasembans adding or subtracting two numbers tofsee i
something overflows or "carry's" over. A bitdiklong addition. Add a column, carry the one] adother, etc...

In hardware there is parallel to long addition: flkéadder. The adder adds A+B+Cin, and outju& Cout,
where all signals are single bits. To add widki@s you chain the carry signals as needed.

A B
vy

A B CIn Ccout S
AREERAE
el FUll | C o | 1| 1|13
in—» Full —Cout 0 1 1 1 0
1 0 0 0 1
Adder 1 0 1 1 0
1 1 0 1 0
4, 1 1 1 1 1
Truth Table for Full Adder
S

Chains of full adders work, but are slow. Thegaut signal is derived from the inputs. In2dt adder, there
would be 32 chained carry circuits. Achievingitimwould be harder than necessary.

An improvement is the carry-look-ahead adder. ré&festill a combinatorial element per bit, big itery fast -- a
simple mux. The fpga even has an integral "fastyechain” circuit available for implementing suatiders.

Cout

A W
s 1L

] XOR Sum

Cin

Figure 11 - Carry Look Ahead Adder

To make things even better, a magnitude compadsesn't need the sum output at all. Just thecéasy chain.
Thus we end up with something that fits perfeatipia single Logic Block. The LUT table simplgeds loading
with the result of an XOR between the input on A8d the target value.

Cout

A0 Cin —)

Cout

> S
B — => E:
o]

s D atp
Flip Flop

LT

Cin

CLK

Figure 12 - Carry Look Ahead Compar ator

January 1, 2012 17 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

4.1 Complex Range Compares

The fast carry change logic has a couple of intergpossibilities.

First of all, the range comparison can start anyehelf the first bit of interest is bit 7 (for ample), simply fill all
lower LUT's with 1's. This NOP's them in the cargior.

Second, the bits participating in the range congpardon't need to be contiguous. You could setupnge check
the value formed by indata bits 7,9,11, & 15. @yM™NOP the LUT's of the don't care indata bits.

4.2 Prepare Target Values for Comparator

There are two ways to compare a value. Sub#raetue & look for underflow/borrow, or add & loddr
overflow/carry. Since we have the fast-carry-ohaie're using the latter approach.

A given range target must be bitwise inverted befiging programmed. For non-contiguous rangekshéioe
inverted value must also be spaced out, acrosstibose bits of interest.

Lower value = ~(lower_target - 1)
Upper value = ~(upper_target)

Yields a hit if (upper_target >= indata >= lowerrgeet)

4.3 Range Compare LUT Chains

There are 32 LUT's in each range-check magnitudgacator. Each needs 16-bits, so that totalshitf
configuration. Two LUT's are programmed at ormegfach write to the chain-data register.

MSB LSB

|31|m|25|33|z:|25|25|:4|23|zz|:t|za|1a|1a|1:|1a|15|u|n|12|11|1o| t|s|7 ETEETETETE |.o|

LUTB bit0
LUTA bit15
LUTA bit0

LUTB bit15

Figure 13 - Range LUT Organization

January 1, 2012 18 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

4.4 Example (Range Detect Initialization)

#define RANGE_XORO OxAAAA
#define RANGE_XOR1 0x5555
#define RANGE_NOP OXFFFF

//
// Setup LUT's for Range Detectors
//

// Inputs:

// rangesel: O=rangel-lower, l=rangel-upper, 2=range2-lower, 3=range2-upper
// target: Limit value.

// mask: Indicate which bits should participate in range compare.

void write_range (int rangesel, unsigned int target, unsigned int mask)

unsigned int value;
unsigned int lutvalue=0;
int 1;

write_select(0x30+(rangesel&3));

// Count # of bits in mask...

int bitcount=0;

unsigned int bitmask=1;

for (i=0; i<32; i++, bitmask<<=1)
if (mask & bitmask)
bitcount++;

// Prepare target value...
if (rangesel & 1)
value = ~target; // upper range target
else value = ~(target-1); // Tower range value

// Push MSB of target into bit 31...
value <<= (32-bitcount);

// Generate & program LUT values. Total of 512 bits.
for (i=0; i<16; i=i+1l) {
if (((mask>>31)&1)==0)
Tutvalue = RANGE_NOP;
else {
Tutvalue = ((value>>31)&1) ? RANGE_XOR1 : RANGE_XORO;
value <<= 1;

mask <<= 1;
Tutvalue <<= 16;

if (((mask>>31)&1)==0)
Tutvalue |= RANGE_NOP;

else {
Tutvalue |= ((value>>31)&1) ? RANGE_XOR1 : RANGE_XORO;
value <<= 1;

mask <<= 1;

write_chain(lutvalue);

Figure 14 - Initialize Range Detector LUT Values

January 1, 2012 19 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

5 Edge Detectors

The edge detectors compare a delayed sample tutrent one. If any bit changes, with a risidge, falling
edge, either rising or falling edge, or neither ¢hange), it can be detected.

Each 4-input logic block evaluates two bits of ih@and two bits of delayed input.

A
L4
INDATAO —
INDATAT —
D a—p
DLY_INDATAO — :
DLY_INDATA1 — Flip Flop
>
CLK

Figure 15 - Edge Detector LUT

All that is left now is placing 1's in the LUT wieethe edges of interest occur. Since two biteastuated in
parallel, this becomes slightly more complex.

The following truth table shows the possible coraklioms.

DLY DLY

INDATAL | INDATAO INDATAL | INDATAOQ RISEOQ FALLO RISE1 | FALL1 || BOTHO | BOTH1 | NONEO NONE1

RRRRRrRrRrRloocooloococo
rRrRrRococogrrRRoocoo
RPROO|RrRrOO|RrROO|IR OO
HORO|RORO|ROR Ol o RO
OCOOQIRORO|OOO Q| OO
OFRORIOCOOQOIOROR|IOCOOO
HoOoroloror|roroloror
RRoOOo|RrroojlooRrR|ooRr R

cocoolcococolkroo|rroo
corrlocorrloococoloocoo
oror|lroroloror|roro
corprlocorkr|hrroolkroo

Rising edges are detected when DLY_INDATA is zawad INDATA is one. Falling edges when DLY_INDATA
is one, and INDATA is zero. Both edges are detbby simply combining columns. Neither edgdatected by
inverting the "both" column.

January 1, 2012 20 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

5.1 Example (Edge Detector Initialization)

#define EDGE_RISEO O0x0AOA

#define EDGE_RISE1l 0x00CC

#define EDGE_FALLO 0x5050

#define EDGE_FALL1 0x3300

#define EDGE_BOTHO (EDGE_RISEO|EDGE_FALLO)
#define EDGE_BOTH1 (EDGE_RISEL|EDGE_FALL1)
#define EDGE_NEITHERO (~EDGE_BOTHO & OXFFFF)
#define EDGE_NEITHER1 (~EDGE_BOTH1 & OXFFFF)

void write_edge (int edgesel,
) unsigned int rising_edge, unsigned int falling_edge, unsigned int neither_edge)

write_select (0x34 + (edgesel&l));

unsigned int lutvalue=0;
unsigned int bitmask = 0x80000000;
for (int i=0; 1i<16; i=i+1) {
// Evaluate indata bitl...
if (neither_edge && bitmask)
Tutvalue |= EDGE_NEITHERIL;
else {
if (rising_edge & bitmask) lutvalue |= EDGE_RISE1;
if (falling_edge & bitmask) Tutvalue |= EDGE_FALLI1;

bitmask >>= 1;

// Evaluate indata bitO0...

if (neither_edge && bitmask)
Tutvalue |= EDGE_NEITHERO;

else {
if (rising_edge & bitmask) lutvalue |= EDGE_RISEOQ;
if (falling_edge & bitmask) Tutvalue |= EDGE_FALLO;

bitmask >>= 1;

if ((i1&1)==0)
Tutvalue <<= 16;

else {
write_chain (lutvalue); // write total of 256 bits
Tutvalue = 0;

}

}
}

Figure 16 - Initialize Edge Detector LUT Values

January 1, 2012 21 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

6 Timers

Timer limits are very simple. You write a 36 b#tlue. Lower 32 bits to trigger register 0x38/Bx3Upper 4 bits
to trigger register 0x39/0x3B. The fpga referentock is 100Mhz, so each timer tick correspondsins.

Hit

Figure17 - Timer

The 36-bit timers have a range from 10ns to 68drsdx (over 11 minutes). Timers are started, €dpand
cleared under control of the trigger sequencer.

6.1 Example (Timer Initialization)

¥oid write_trigger_limit (int timersel, uint64_t value)

write_select (0x38 + (timersel&1l)*2);
write_chain (value & OXFFFFFFFF);
write_select (0x39 + (timersel&1l)*2);
write_chain (value>>32);

Figure 18 - Initialize Timer Values

January 1, 2012 22 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

7 Trigger Sums

The trigger summing logic combines the resultsheftrigger terms, range detectors, edge detectorsimers.

a

b
c
- r @]
in_range
3 g
d
edge

e

timer1 = 10ns
f
@]

g
h
- @]
in_range2 .
= Or
i
@)

edge?2
i
timer2 > 10ns

O

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Figure 19 - Combination Trigger Sum

Each of the operations (the "OR" blocks shown apave implemented using LUT memories. Therefdreytcan
be configured with any logical operation. Typi@ahctions are: AND, NAND, OR, NOR, XOR, NXOR, Ay
B-only, ANY, or NOP.

In addition, the LUT memories can be used to intlegtresult of a trigger term, range, edge or tidetect

(anything in the first column above). For exampléowing "a" or "not a", or "in_range" or "out cdnge"
variations, etc...

There are three trigger sums per sequencer statesiéteen trigger sequencer states, for a totdBdfigger sums
which need configuring.

7.1 Trigger Sum Inputs

As mentioned earlier, the inputs to the sum aggéi terms, range detectors, edge detectors argstinResults of
all inputs feed into the "pair" LUT's (which evataa pair of sum inputs each).

e Trigger Terms. 32-bit masked compares. Each senpplies a two bit result. LSB corresponds to
indata[15:0]. MSB to indata[31:16]. Both hitaist be asserted to indicate a hit.

» Range Detectors. The range detectors similarlplgupo signals. LSB is the lower limit hit. MSB
upper limit hit. Both bits must be assertedni¢ate a hit.

» Edge Detectors. Single hit/miss signal. Fed bth bits 2 & 3 of pair LUT.

e Timer. Single hit/miss signal. Fed into both l&t& 3 of pair LUT.

January 1, 2012 23 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

7.2 Trigger Sum Operations

Operation codes for the "pair" LUT's are a litttusing since terms & range detectors supply tgoads each

(both of which must be asserted for a hit).

nlococolocococolcocoofdr—H
<|ocorlococor|lcocoHlcooH
o
Mool rroloco
z
o
gleeerlpeoreoon|Hmmo
o
Sl-~+ol-i-HofHrrolococo
=z
Klocor|ooorlcooH|HHH
o
ZlH A A A O
z
o
Z|ocoofpooopoooooH
slo—erlererleronloro
o)
Sloo-HlcorHloorrloorH
=
=
N o iakatal SISISIST RS EEES
a
coocoloococo|drA—HlA—A——

Figure 20 - Pair LUT Operations

The mid LUT is straight forward. A pure 4-inpogic gate:

o
LlcorlorrHlod -
z
o
gle—effeeofooolpooo
o
o] ISSIS] SISISIS] SISISIS] SIS
Lottt A At A A [
o
ZlH A A A A Ao
z
o
Z|oooopooopoooeooH
nleerlerorjoroHloron
o)
3loo-HlocorHloorHloo
)
=
cleccol-rrrlocoof-r-
a
coocolocococo|dA—H|lA—A——

Figure21-Mid LUT Operations

It's configurad a 2-input logic gate:

The final LUT only has two inputs.

P
ZlHoorloocooloooofcooo
z
P
gle-ofpooolpooolocon
P
glrooolpooofooooooco
Llor~locooloocooloooco
a
Z|l-4——joococoloocoofcooo
z
o
Z|pcorlocoolooooloooo
sfooleororonloro
o)
3loo-HlcorHloorrloor—
)
S
cleooolirrlocooft—-
a
coocoloocooldtrld———

Figure 22 - Final LUT Operations

All LUT's can also be programmed to NOP (ie: alwaytput zero), or ANY (always output one), or anmythelse

you can think up.

12:05 AM

24 of 36

January 1, 2012

Logic Sniffer Demon Core FPGA Specification

7.3 Trigger Inverting

Inverting of trigger sum inputs is possible, but abvious. Inverting of inputs must be incorpodaiteto the LUT
operation tables described in the previous secti@emplicating things is how the "pair" LUT tablesist combine
two signals from the term & range detectors.

For example, see the OR/NOR function from the P@if table below.

Sum Inputs oR NOR
B A
0OJo|O]oO 0 1
0jJ]o|O]1 0 1
0OjJ]o|1]0 0 1
ofojJ1]1 1 0
0O]J]1[0]O 0 1
0O]J]1]0]1 0 1
0O]J]1|1]0 0 1
0O]J]1]1]1 1 0
I[0]0[O 0 1
11001 0 1
1]1]0]1]|0 0 1
1]0]1|1 1 0
1]11]0]O0 1 0
111]01|1 1 0
111]11]0 1 0
1]11]1]1 1 0

Inputs not inverted

Sum Inputs oR NOR
B A
0Jo|O]O 1 0
0jJ]o|O]1 1 0
0OjJ]o|1]0 1 0
ofo]1]1 0 1
o[IfJoTfoO 1 0
0O]J]1]0]1 1 0
0O]J]1|1]0 1 0
0O|J]1]1]1 0 1
I[0]0[O 1 0
110]0]1 1 0
1]1]0]1]|0 1 0
1]0]1|1 0 1
1]11]0]O0 1 0
111]01|1 1 0
111]11]0 1 0
1]11]1]1 1 0

Input "A" Inverted

The corresponding OR & NOR LUT table values are:

To invert A, we simply exchange 0x7's with 0x8's\(i&a versa).

OR NOR
Non Inverted| OxF888 | 0x0777
Invert "A" | OXF777 | 0x0888
Invert "B" | OXx8FFF | 0x7000
Invert Both| OX7FFF | 0x8000

with all lower nibbles.

Sum Inputs oR NOR
B A
0OJo|O]oO 1 0
0jJ]0o|O]1 1 0
0OjJ]o|1]0 1 0
ofo]1]1 1 0
ofIfoTfoO 1 0
0O]J]1]0]1 1 0
0O]J]1|1]0 1 0
0O]J]1]1]1 1 0
I[0]0[O 1 0
110]0]1 1 0
1]1]0]1]|0 1 0
1]0]1|1 1 0
1]1]1]0]O0 0 1
111]01|1 0 1
1]1]1]1f0 0 1
1]11]1]1 1 0

Input "B" Inverted

To invert B, we swap the mostificant nibble

January 1, 2012

25 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

7.4 Example (Trigger Sum Initialization)

#define OP_NOP 0
#define OP_ANY 1
#define OP_AND 2
#define OP_NAND 3
#define OP_OR 4
#define OP_NOR 5
#define OP_XOR 6
#define OP_NXOR 7
#define OP_A 8
#define oP_B 9

// NOP ANY AND NAND OR NOR XOR NXOR A B
int pairvalue[] = {0x0000, 0xFFFF,0x8000,0x7FFF,0xF888,0x0777,0x7888,0x8777,0x8888,0xF000} ;
int midvalue[] = {0x0000,0xFFFF,0x8000,0x7FFF,0xFFFE,0x0001,0x0116,0xFEE9,O0XEEEE,OXFFFO0};

int finalvalue[] = {0x0000,0xFFFF,0x0008,0x0007,0x000E,0x0001,0x0006,0x0009,0x0002,0x0004};
int get_pairvalue(int op, int invert_a, int invert_b)

static int flipa[] = {O,0,0,0,0,0,0,8,7,0,0,0,0,0,0,0xF};
int value = pairvaluelop];

if (invert_a)
value = (flipa[(value>>12)&0xF]<<12) | (flipa[(value>>8)&0xF]<<8) |
(flipa[(value>>4)&0xF]<<4) | (flipa[value&0xF]);

if (invert_b)
value = ((value & 0xF)<<12) | ((value>>4) & OxF00) |
((value>>8) & OxF0O) | ((value>>12) & OxF);

return (value);

void write_trigger_sum (
int statenum, int stateterm,
int invert_a, int invert_b, int invert_c, int invert_d, int invert_e,
int invert_rangel, int invert_edgel, int invert_timerl,
int invert_f, int invert_g, int invert_h, int invert_i, int invert_j,
int invert_range2, int invert_edge2, int invert_timer2,
int op_ab, int op_c_rangel, int op_d_edgel, int op_e_timerl,
int op_fg, int op_h_range2, int op_i_edge2, int op_j_timer2,
int op_midl, int op_mid2, int op_final)

int pv_ab = get_pairvalue(op_ab, invert_a, invert_b);

int pv_c_rangel = get_pairvalue(op_c_rangel, invert_c, invert_rangel);
int pv_d_edgel = get_pairvalue(op_d_edgel, invert_d, invert_edgel);
int pv_e_timerl = get_pairvalue(op_e_timerl, invert_e, invert_timerl);
int pv_fg = get_pairvalue(op_fg, invert_f, invert_g);

int pv_h_range2 = get_pairvalue(op_h_range2, invert_h, invert_range2);
int pv_i_edge2 = get_pairvalue(op_i_edge2, invert_i, invert_edge2);
int pv_j_timer2 = get_pairvalue(op_j_ t1mer2 invert_j, invert_timer2);

write_select (0x40 + (statenum*4) + stateterm);
write_chain (finalvaluel[op_final]);

write_chain ((midvalue[op_ m1d2]<<16) | midvalue[op_midl]);
write_chain ((pv_j_timer2<<16) | pv_i_edge2);

write_chain ((pv_h_range2<<16) | pv_fg);

write_chain ((pv_e_timerl<<16) | pv_d_edgel);

write_chain ((pv_c_rangel<<16) | pv_ab);

Figure 23 - Initialize Trigger Sum

January 1, 2012 26 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

8 Trigger Sequence States

Sequence states allow you to control how the apalgzaluates and stores sampled data. Eaclgstateyou
control over data capturing, searching for a tafgptionally multiple times), or branching to anetlsequence
should a special condition occur. On a hit, thalyzer advances to the next sequence staten Hilsa trigger the

analyzer controller & start/stop timers. With gjgence states, you can create complex protodohiiolg

triggers.

Sequnce Level 5

While Storing [

(a-b)+in_range1]

If Target [

e Jowun 2

on Hit;(Set Trigger][Timer Control]

EBeOn[

#h] Go to Level

Figure 24 - Example Sequence L evel

For each state you specify:

» Capture Term (sum of trigger terms, range cheakge eletect & timer hits)
» Hit Term (sum of trigger terms, range checks, edigfect & timer hits)
» Else Term (sum of trigger terms, range checkse eldgect & timer hits)

¢ Occurrence Count
* Else State

e Timer Control Flags (start/stop/clear for timer& 2)

e Trigger Flag

The trigger sequencer itself is a relatively simgiklte machine. Pseudocode for it is:

capture data

update_timers

}
}

reset hit_count

if (sampled_input valid) then {
if (capture_term valid) then

if (hit_term valid) then {
increment hit_count
if (hit_count == fsm_occurence_count) then {

reset hit_count
if (fsm_trigger || last_state) then assert run to controller
if (!last_state && !fsm_last_state) advance to next state

otherwise if (else_term valid) then {

go to state "fsm_else_level"

Figure 25 - Trigger Sequencer State Machine

January 1, 2012

27 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

8.1 Example (Trigger Sequence Initialization)

#define TRIGSTATE_STATENUM_MASK OXF
#define TRIGSTATE_OBTAIN_MASK OxO000FFFFF
#define TRIGSTATE_ELSE_BITOFS 20

#define TRIGSTATE_STOP_TIMERO 0x01000000
#define TRIGSTATE_STOP_TIMER1 0x02000000
#define TRIGSTATE_CLEAR_TIMERO 0x04000000
#define TRIGSTATE_CLEAR_TIMERL1 0x08000000
#define TRIGSTATE_START_TIMERO 0x10000000
#define TRIGSTATE_START_TIMERL 0x20000000
#define TRIGSTATE_TRIGGER_FLAG 0x40000000
#define TRIGSTATE_LASTSTATE 0x80000000

void write_trigger_state (
int statenum, // 0 to 15
int Tast_state,
int set_trigger,
int start_timer, // bitO=timerl, bitl=timer2
int stop_timer, // bitO=timerl, bitl=timer2
int clear_timer, // bitO=timerl, bitl=timer2
int else_state, // 0 to 15
int obtain_count)

write_select (statenum & TRIGSTATE_STATENUM_MASK);

unsigned int value =
((else_state & TRIGSTATE_STATENUM_MASK)<<TRIGSTATE_ELSE_BITOFS)
(obtain_count & TRIGSTATE_OBTAIN_MASK) ;
if (last_state) value |= TRIGGER_LASTSTATE;
if (set_trigger) value |= TRIGSTATE_TRIGGER_FLAG;
if (start_timer & 1) value |= TRIGSTATE_START_TIMERO;
if (start_timer & 2) value |= TRIGSTATE_START_TIMERI1;
if (stop_timer & 1) value |= TRIGSTATE_STOP_TIMERO;
if (stop_timer & 2) value |= TRIGSTATE_STOP_TIMERL;
if (clear_timer & 1) value |= TRIGSTATE_CLEAR_TIMERO;
if (clear_timer & 2) value |= TRIGSTATE_CLEAR_TIMER1;
write_chain (value);

Figure 26 - Initialize Trigger Sequence

January 1, 2012 28 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

Appendix A - Advanced Trigger Config Registers

The client initializes advanced trigger LUT chairssng the Ox9Eonfiguration-select command, followed by one

or more Ox9Rwrite-data commands. Each data write adds 32-bits to tlees LUT chain.

Exceptions are the FSM state configs & timer limithich store DWORD values directly. However, dlient
sees no difference (just more writes to triggerficoregs).

Client Long Commands (command byte + four datad)\t&B data byte first):

Ox9E = ADVTRIG-Config-Select (LSB = Chain#.
Ox9F = ADVTRIG-Write-Data

FSM State Data

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
OxO0F

LUTCHAIN's:

0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x30
0x31
0x32
0x33
0x34
0x35
0x38-0x39
0x3A-0x3B

0x40

0x41

0x42

0x44-0x46
0x48-0x4A
0x4C-0x4E
0x50-0x52
0x54-0x56
0x58-0x5A
0x5C-0x5E
0x60-0x62
0x64-0x66
0x68-0x6A
0x6C-0x6E
0x70-0x72
0x74-0x76
0x78-0x7A
0x7C-0x7E

FSM State
FSM State
FSM State
FSM State
FSM State
FSM State
FSM State
FSM State
FSM State
FSM State

OoONOUVIAhWNRO

FSM State 10
FSM State 11
FSM State 12
FSM State 13
FSM State 14
FSM State 15

trigge
trigge
trigge
trigge
trigge
trigge
trigge
trigge
trigge
trigge
range
range
range
range
edge 1
edge 2
timer
timer

state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state
state

r
r
r
r
r
r
r
r
r
r
1
1
2
2

term (128 bit
term
term
term
term
term
term
term
term
term
Tower (512 bit
upper (512 bit
Tower (512 bit
upper (512 bit

.= 5Q D ONT R

(32-bit word's)

chains)

chains)
chains)
chains)
chains)

(64 bit chains)
(64 bit chains)
Timit (36-bit word's)
Timit (36-bit word's)

hit-term
else-term
capture-term
terms
terms
terms
terms
terms
terms
terms
terms
terms
terms
terms
terms
terms
terms
terms

other bytes reserved.)

January 1, 2012

29 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

Appendix B - Example Code

#define write_select(value) write_long_command (0x9E, value)
#define write_chain(value) write_long_command (0x9F, value)

#define RANGE_XORO OxAAAA
#define RANGE_XOR1 0x5555
#define RANGE_NOP OXFFFF

#define EDGE_RISEO Ox0AOA

#define EDGE_RISE1l 0x00CC

#define EDGE_FALLO 0x5050

#define EDGE_FALL1 0x3300

#define EDGE_BOTHO (EDGE_RISEO|EDGE_FALLO)
#define EDGE_BOTH1 (EDGE_RISE1|EDGE_FALLL1)
#define EDGE_NEITHERO (~EDGE_BOTHO & OXFFFF)
#define EDGE_NEITHER1 (~EDGE_BOTH1 & OXFFFF)

#define TRIGSTATE_STATENUM_MASK OXxF
#define TRIGSTATE_OBTAIN_MASK OxO000FFFFF
#define TRIGSTATE_ELSE_BITOFS 20

#define TRIGSTATE_STOP_TIMERO 0x01000000
#define TRIGSTATE_STOP_TIMER1 0x02000000
#define TRIGSTATE_CLEAR_TIMERO 0x04000000
#define TRIGSTATE_CLEAR_TIMERL 0x08000000
#define TRIGSTATE_START_TIMERO 0x10000000
#define TRIGSTATE_START_TIMERL 0x20000000
#define TRIGSTATE_TRIGGER_FLAG 0x40000000
#define TRIGSTATE_LASTSTATE 0x80000000

#define OP_NOP 0
#define OP_ANY 1
#define OP_AND 2
#define OP_NAND 3
#define OP_OR 4
#define OP_NOR 5
#define OP_XOR 6
#define OP_NXOR 7
#define OP_A 8
#define oP_B 9

//
;; Setup LUT's for Trigger Term

// Inputs are 32-bit target & mask for comparing against captured analyzer data.
// If a mask bit is set, the corresponding target bit participates in the trigger.
//

void write_term (int term_number, unsigned int target, unsigned int mask)

unsigned int bitmask=1;

unsigned int lutvalue0=0;
unsigned int lutvaluel=0;
unsigned int lutvalue2=0;
unsigned int lutvalue3=0;

for (int i=0; i<16; i=i+1) {
if (CCi A (target & OxF)) & (mask & OxF))==0) lutvalueQ |= bitmask;

if (((i A ((target>>4) & 0xF)) & ((mask>>4) & OxF))==0) lutvalueO |[= (bitmask<<16);
if (((i A ((target>>8) & O0xF)) & ((mask>>8) & OxF))==0) lutvaluel |= bitmask;

if (((i A ((target>>12) & O0xF)) & ((mask>>12) & O0xF))==0) Tutvaluel |= (bitmask<<16);
if (((i A ((target>>16) & 0xF)) & ((mask>>16) & OxF))==0) lutvalue2 |= bitmask;

if (((i A ((target>>20) & O0xF)) & ((mask>>20) & O0xF))==0) Tutvalue2 |= (bitmask<<16);
if (((i A ((target>>24) & 0xF)) & ((mask>>24) & OxF))==0) lutvalue3 |= bitmask;

gf (((l A ((target>>28) & O0xF)) & ((mask>>28) & OxF))==0) Tutvalue3 [= (bitmask<<16);
jtmask <<= 1;

}

// Write data into LUT serial chain. MSB must goes in first. Total of 128 bits.
write_select (0x20 + (term_number%10));

write_chain (lutvalue3);

write_chain (lutvalue2);

write_chain (lutvaluel);

write_chain (lutvalue0);

January 1, 2012 30 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

//
;; Setup LUT's for Range Detectors

// Inputs:

// rangesel: O=rangel-lower, l=rangel-upper, 2=range2-lower, 3=range2-upper
// target: Limit value.

;; mask: Indicate which bits should participate in range compare.

void write_range (int rangesel, unsigned int target, unsigned int mask)

unsigned int value;
unsigned int lutvalue=0;
int 1;

write_select(0x30+(rangesel&3));

// Count # of bits in mask...

int bitcount=0;

unsigned int bitmask=1;

for (i=0; i<32; i++, bitmask<<=1)
if (mask & bitmask)
bitcount++;

// Prepare target value...
if (rangesel & 1)
value = ~target; // upper range target
else value = ~(target-1); // Tower range value

// Push MSB of target into bit 31...
value <<= (32-bitcount);

// Generate & program LUT values. Total of 512 bits.
for (i=0; i<16; i=i+1l) {
if (((mask>>31)&1)==0)
Tutvalue = RANGE_NOP;
else {
Tutvalue = ((value>>31)&1) ? RANGE_XOR1 : RANGE_XORO;
value <<= 1;

mask <<= 1;
Tutvalue <<= 16;

if (((mask>>31)&1)==0)
Tutvalue |= RANGE_NOP;

else {
Tutvalue |= ((value>>31)&1) ? RANGE_XOR1 : RANGE_XORO;
value <<= 1;

mask <<= 1;

write_chain(lutvalue);

//
// Setup LUT's for Edge Detectors.
;; Each LUT handles two bits of input. Bits 0 & 1 are input. Bits 2 & 3 delayed input.

void write_edge (int edgesel,
(unsigned int rising_edge, unsigned int falling_edge, unsigned int neither_edge)
write_select (0x34 + (edgesel&l));

unsigned int lutvalue=0;
unsigned int bitmask = 0x80000000;
for (int i=0; 1i<16; i=i+1) {
// Evaluate indata bitl...
if (neither_edge && bitmask)
Tutvalue |= EDGE_NEITHERIL;
else {
if (rising_edge & bitmask) lutvalue |= EDGE_RISE1;
if (falling_edge & bitmask) Tutvalue |= EDGE_FALLI1;

bitmask >>= 1;

// Evaluate indata bitO...
if (neither_edge && bitmask)
Tutvalue |= EDGE_NEITHERO;
else {
if (rising_edge & bitmask) Tutvalue |= EDGE_RISEOQ;

January 1, 2012 31 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

if (falling_edge & bitmask) Tutvalue |= EDGE_FALLO;
bitmask >>= 1;

if ((1&1)==0)
Tutvalue <<= 16;

else {
write_chain (lutvalue); // write total of 256 bits
Tutvalue = 0;

}

}
}

//

// Setup trigger timers...

//

void write_trigger_limit (int timersel, uint64_t value)

write_select (0x38 + (timersel&1l)*2);
write_chain (value & OXFFFFFFFF);
write_select (0x39 + (timersel&1l)*2);
write_chain (value>>32);

}

/ . N i

// Setup trigger state term combinational sum. Operations for

;; all 11 fields are merged & written. Uses table based lookups.

// NOP ANY AND NAND OR NOR XOR NXOR A B

int pairvalue[] = {0x0000,0xFFFF,0x8000,0x7FFF,0xF888,0x0777,0x7888,0x8777,0x8888,0xF000};
int midvalue[] = {0x0000,0xFFFF,0x8000,0x7FFF,0xFFFE,0x0001,0x0116,0xFEE9,O0XEEEE,OXFFFO0};

int finalvalue[] = {0x0000,0xFFFF,0x0008,0x0007,0x000E,0x0001,0x0006,0x0009,0x0002,0x0004};
int get_pairvalue(int op, int invert_a, int invert_b)

static int flipa[] = {0,0,0,0,0,0,0,8,7,0,0,0,0,0,0,0xF};
int value = pa1rva1ue[op],

if (invert_a)
value = (flipa[(value>>12)&0xF]<<12) | (flipa[(value>>8)&0xF]<<8) |
(flipa[(value>>4)&0xF]<<4) | (flipa[value&0xF]);

if (invert_b)
value = ((value & 0xF)<<12) | ((value>>4) & OxF00) |
((value>>8) & O0xFO) | ((value>>12) & OxF);

return (value);

}

void write_trigger_sum (
int statenum, int stateterm,
int invert_a, int invert_b, int invert_c, int invert_d, int invert_e,
int invert_rangel, int invert_edgel, int invert_timerl,
int invert_f, int invert_g, int invert_h, int invert_i, int invert_j,
int invert_ range2 int invert_edge2, int invert_timer2,
int op_ab, int op_c_rangel, int op_ d _edgel, int op_e_ t1mer1
int op_fg, int op_h_range2, int op_i_edge2, int op_j_timer2,
int op_m1d1, int op_mid2, int op_final)

int pv_ab = get_pairvalue(op_ab, invert_a, invert_b);

int pv_c_rangel = get_pairvalue(op_c_rangel, invert_c, invert_rangel);
int pv_d_edgel = get_pairvalue(op_d_edgel, invert_d, invert_edgel);
int pv_e_timerl = get_pairvalue(op_e_timerl, invert_e, invert_timerl);
int pv_fg = get_pairvalue(op_fg, 1nvert f, invert_g);

int pv_h_range2 = get_pairvalue(op_h range2 invert_h, invert_range2);
int pv_i_edge2 = get_pairvalue(op_i_edgeZ, 1nvert_i, invert_edge2);
int pv_j_timer2 = get_pairva1ue(op_j_t1mer2, invert_j, invert_timer2);

write_select (0x40 + (statenum*4) + stateterm);
write_chain (finalvaluel[op_finall]);

write_chain ((midvalue[op_mid2]<<16) | midvalue[op_midl]);
write_chain ((pv_ % _timer2<<16) | pv_i_edge2);

write_chain ((pv_h_range2<<16) | pv_fg);

write_chain ((pv_e_timerl<<16) | pv_d_edgel);

write_chain ((pv_c_rangel<<16) | pv_ab);

January 1, 2012 32 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

//
// Setup trigger state. Specify trigger mode, timer controls, "else" state number,
// and necessary "obtain" count (number of hits needed before full hit observed).

void write_trigger_state (
int statenum, // 0 to 15
int Tast_state,
int set_trigger,
int start_timer, // bitO=timerl, bitl=timer2
int stop_timer, // bitO=timerl, bitl=timer2
int clear_timer, // bitO=timerl, bitl=timer2
int else_state, // 0 to 15
int obtain_count)

write_select (statenum & TRIGSTATE_STATENUM_MASK);

unsigned int value =
((else_state & TRIGSTATE_STATENUM_MASK)<<TRIGSTATE_ELSE_BITOFS) |
(obtain_count & TRIGSTATE_OBTAIN_MASK);
if (last_state) value |= TRIGSTATE_LASTSTATE;
if (set_trigger) value |= TRIGSTATE_TRIGGER_FLAG;
if (start_timer & 1) value |= TRIGSTATE_START_TIMERO;
if (start_timer & 2) value |= TRIGSTATE_START_TIMERI1;
if (stop_timer & 1) value |= TRIGSTATE_STOP_TIMERO;
if (stop_timer & 2) value |= TRIGSTATE_STOP_TIMERL;
if (clear_timer & 1) value |= TRIGSTATE_CLEAR_TIMERO;
if (clear_timer & 2) value |= TRIGSTATE_CLEAR_TIMER1;
write_chain (value);

January 1, 2012 33 of 36

12:05 AM

Logic Sniffer Demon Core FPGA Specification

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation,, 51 Franklin Street, Fifth Floor, Boston, M@2110-1301 USA
Everyone is permitted to copy and distribute verbaipies of this license document, but changirig iitot allowed.

Preamble

The licenses for most software are designed t® aakay your freedom to share and change it. Byrasithe GNU General Public License is
intended to guarantee your freedom to share anuehfaee software--to make sure the software &sfiveall its users. This General Public
License applies to most of the Free Software Fotimala software and to any other program whoseaxstbommit to using it. (Some other
Free Software Foundation software is covered byaNe) Lesser General Public License instead.) Yauapply it to your programs, too.

When we speak of free software, we are referrirfgedom, not price. Our General Public Licensesdasigned to make sure that you have the
freedom to distribute copies of free software (ahdrge for this service if you wish), that you tigeesource code or can get it if you want it, that
you can change the software or use pieces onigmfree programs; and that you know you can dsethigings.

To protect your rights, we need to make restriditivat forbid anyone to deny you these rights @stoyou to surrender the rights. These
restrictions translate to certain responsibilif@syou if you distribute copies of the software foyou modify it.

For example, if you distribute copies of such agpam, whether gratis or for a fee, you must gieritipients all the rights that you have. You
must make sure that they, too, receive or canhgesdurce code. And you must show them these t&ortteey know their
rights.

We protect your rights with two steps: (1) copytitte software, and (2) offer you this license vahgives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, wetw@make certain that everyone understands tleat ls no warranty for this free software. If
the software is modified by someone else and passede want its recipients to know that what thaye is not the original, so that any
problems introduced by others will not reflect be triginal authors' reputations.

Finally, any free program is threatened constanglgoftware patents. We wish to avoid the danugtr redistributors of a free program will
individually obtain patent licenses, in effect makihe program proprietary. To prevent this, weehmade it clear that any patent must be
licensed for everyone's free use or not licensed.at

The precise terms and conditions for copying, iligstion and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMSAND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or otheikwernich contains a notice placed by the copyrigiitiér saying it may be distributed under
the terms of this General Public License. The gRam", below, refers to any such program or worki a "work based on the Program" means
either the Program or any derivative work underycigit law: that is to say, a work containing thedtam or a portion of it, either verbatim or
with modifications and/or translated into anotle@rduage. (Hereinafter, translation is includedhauit limitation in the term "modification”.)
Each licensee is addressed as "you".

Activities other than copying, distribution and nifaghtion are not covered by this License; theyautside its scope. The act of running the
Program is not restricted, and the output fromRiegram is covered only if its contents constituteork based on the Program (independent of
having been made by running the Program). Wheltari$ true depends on what the Program does.

1. You may copy and distribute verbatim copiethefProgram's source code as you receive it,\yinradium, provided that you conspicuously
and appropriately publish on each copy an apprigpdapyright notice and disclaimer of warranty; fxégact all the notices that refer to this
License and to the absence of any warranty; arelajiy other recipients of the Program a copy &f tiéense along with the Program.

You may charge a fee for the physical act of tramsfg a copy, and you may at your option offernamaty protection in exchange for a fee.

2. You may modify your copy or copies of the Reog or any portion of it, thus forming a work basedthe Program, and copy and distribute
such modifications or work under the terms of Secfiabove, provided that you also meet all of tlvesalitions:

a) You must cause the modified files to canmgninent notices stating that you changed the éiled the date of any change.

b) You must cause any work that you distrilrtpublish, that in whole or in part contains ®derived from the Program or any part thereof,
to be licensed as a whole at no charge to all fharties under the terms of this License.

January 1, 2012 34 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

c) If the modified program normally reads comsinteractively when run, you must cause it, whtanted running for such interactive use
in the most ordinary way, to print or display amanncement including an appropriate copyright moéind a notice that there is no warranty (or
else, saying that you provide a warranty) and tisats may redistribute the program under theseitomms] and telling the user how to view a
copy of this License. (Exception: if the Prograself is interactive but does not normally printlsan announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work afale. If identifiable sections of that work aret mlerived from the Program,

and can be reasonably considered independent padase works in themselves, then this License,tartédrms, do not apply to those
sections when you distribute them as separate wdks when you distribute the same sections asgbar whole which is a work based
on the Program, the distribution of the whole mhesbn the terms of this License, whose permisdiamather licensees extend to the
entire whole, and thus to each and every part déggs of who wrote it.

Thus, it is not the intent of this section to claights or contest your rights to work written eely by you; rather, the intent is to
exercise the right to control the distribution efidative or collective works based on the Program.

In addition, mere aggregation of another work ratdal on the Program with the Program (or with &weased on the Program) on a volume of
a storage or distribution medium does not bringatter work under the scope of this License.

3. You may copy and distribute the Program (ao&k based on it, under Section 2) in object cadexecutable form under the terms of
Sections 1 and 2 above provided that you also @écobthe following:

a) Accompany it with the complete correspondirarhine-readable source code, which must belslis¢d under the terms of Sections 1
and 2 above on a medium customarily used for soéhivderchange; or,

b) Accompany it with a written offer, valid fat least three years, to give any third partyafeharge no more than your cost of physically
performing source distribution, a complete machiedable copy of the corresponding source codeg thistributed under the terms of Sections
1 and 2 above on a medium customarily used fowsoé interchange; or,

¢) Accompany it with the information you recsivas to the offer to distribute corresponding s®aode. (This alternative is allowed only for
noncommercial distribution and only if you receitbeé program in object code or executable form witbh an offer, in accord with Subsection
b above.)

The source code for a work means the preferred &driine work for making modifications to it. Fan executable work, complete source code
means all the source code for all modules it castglus any associated interface definition fifggs the scripts used to control compilation and
installation of the executable. However, as aigpegception, the source code distributed neednofitde anything that is normally distributed
(in either source or binary form) with the majongmnents (compiler, kernel, and so on) of the dpegaystem on which the executable runs,
unless that component itself accompanies the exileut

If distribution of executable or object code is mdny offering access to copy from a designatedeplgoen offering equivalent access to copy
the source code from the same place counts aidigtin of the source code, even though third pardire not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distre the Program except as expressly providedruth@eLicense. Any attempt otherwise to
copy, modify, sublicense or distribute the Progiawoid, and will automatically terminate your righunder this License. However, parties who
have received copies, or rights, from you undes tidense will not have their licenses terminatedosig as such parties remain in full
compliance.

5. You are not required to accept this Licenseesyou have not signed it. However, nothing glsats you permission to modify or distribute
the Program or its derivative works. These actamaesprohibited by law if you do not accept thisdtise. Therefore, by modifying or
distributing the Program (or any work based onRhegram), you indicate your acceptance of thisriseeto do so, and all its terms and
conditions for copying, distributing or modifyinge Program or works based on it.

6. Each time you redistribute the Program (orw&oyk based on the Program), the recipient aut@alfitireceives a license from the original
licensor to copy, distribute or modify the Prograniject to these terms and conditions. You maympbse any further restrictions on the
recipients' exercise of the rights granted heréau are not responsible for enforcing compliancehind parties to this License.

7. If, as a consequence of a court judgmentlegation of patent infringement or for any otheasen (not limited to patent issues), conditions
are imposed on you (whether by court order, agraeoreotherwise) that contradict the conditionshi$ License, they do not excuse you from
the conditions of this License. If you cannot iigtte so as to satisfy simultaneously your obl@at under this License and any other pertinent
obligations, then as a consequence you may nathditt the Program at all. For example, if a palieense would not permit royalty-free
redistribution of the Program by all those who reeeopies directly or indirectly through you, thie@ only way you could satisfy both it and
this License would be to refrain entirely from distition of the Program.

If any portion of this section is held invalid anenforceable under any particular circumstancebét@nce of the section is intended to apply
and the section as a whole is intended to appbghier circumstances.

It is not the purpose of this section to induce t@infringe any patents or other property riglatircis or to contest validity of any such claims;
this section has the sole purpose of protectingrtiegrity of the free software distribution systemhich is implemented by public license
practices. Many people have made generous cofitnitsuto the wide range of software distributedtigh that system in reliance on consistent

January 1, 2012 35 of 36 12:05 AM

Logic Sniffer Demon Core FPGA Specification

application of that system; it is up to the auttonor to decide if he or she is willing to distiiesoftware through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clehatis believed to be a consequence of the rakiLicense.

8. If the distribution and/or use of the Progriamestricted in certain countries either by patemtby copyrighted interfaces, the original
copyright holder who places the Program underltltiense may add an explicit geographical distrimufimitation excluding those countries, so
that distribution is permitted only in or among ntiies not thus excluded. In such case, this ISeéncorporates the limitation as if written in
the body of this License.

9. The Free Software Foundation may publish egl/emnd/or new versions of the General Public Liedrsm time to time. Such new versions
will be similar in spirit to the present versionytimay differ in detail to address new problemsanrcerns.

Each version is given a distinguishing version nembf the Program specifies a version numbehisf ticense which applies to it and "any
later version", you have the option of followingetterms and conditions either of that version aarof later version published by the Free
Software Foundation. If the Program does not $pecversion number of this License, you may chasgversion ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Peagrinto other free programs whose distribution @k are different, write to the author to ask
for permission. For software which is copyrightgdthe Free Software Foundation, write to the Beftware Foundation; we sometimes make
exceptions for this. Our decision will be guidgdtbe two goals of preserving the free status ladetivatives of our free software and of
promoting the sharing and reuse of software gelyeral

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGHERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN ORERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THEOST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAVOR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IKIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INWDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR{IRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOIHR OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMSAND CONDITIONS

January 1, 2012 36 of 36 12:05 AM

