
CHAPTER 2

Neutrino oscillations

The discovery that neutrinos can change their types (flavours) while traveling in space, indicating
they have non-zero masses was one of the breakthrough moments in elementary particle physics. It
proved that the Standard Model of particles and their strong and electroweak interactions is not
a complete theory, because it does not provide mechanism for generating neutrino masses. The first
hypothesis about neutrino oscillations was formulated by Bruno Pontecorvo in 1957, who suggested
the possibility of neutrino-antineutrino oscillations [97]. After discovery of second type of neutrino,
νµ, Maki, Nakagawa and Sakata discussed the possibility that νe and νµ can be a mixture of two
neutrino mass eigenstates [98]. Finally, the first model of νe ←→ νµ oscillations was formulated
by Pontecorvo [99] in 1968 and later developed by Gribov and Pontecorvo [100] in 1969. The work
included in the publication from 1969 was motivated by the results from the first experiment that was
searching for neutrinos from the Sun. The first neutrino detector designed to study solar neutrinos
was constructed in the Homestake gold mine in South Dakota by Raymond Davis Jr. It was filled
with 615 t of tetrachloroethylene and was designed to detect solar neutrinos in the reaction:

νe + 37Cl→ 37Ar + e−. (2.1)

The first results from Davis’ experiment, published in 1968 [21] indicated that the number of inter-
actions of νe from the Sun is much smaller than theoretically expected. In the final publication [22]
the quoted flux of solar neutrinos measured in the experiment was

2.56± 0.16(stat)± 0.16(sys) SNU, (2.2)

where SNU stands for Solar Neutrino Unit (reaction per 1036 target atoms per second). This result
corresponds to about 30% of the flux predicted by the Solar Standard Model 8.5 ± 0.9 SNU [102].
Pontecorvo and Gribov postulated that the number of detected νe is smaller than expected because
electron neutrinos can change the flavour (oscillate) into muon neutrinos, νe � νµ, on their way to
the Earth. The oscillation hypothesis was confirmed in 1998 by the Super-Kamiokande experiment [3]
that studied interactions of neutrinos produced when primary cosmic rays (mostly protons) interact
with the atmosphere. The flux of atmospheric neutrinos was measured by observing leptons produced
in interactions of neutrinos on nuclei (Eq. (2.3)):

ν + N→ l + X, (2.3)

where ν is either neutrino or antineutrino (νe,νµ,νe,νµ), N is nucleus, l is lepton, and X stands for
produced hadrons. Super-Kamiokande is the 50 kt water Cherenkov detector that can distinguish
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Figure 2.1. Results of Super-Kamiokande analysis of atmospheric neutrinos. Zenith angle distributions of e-like and
µ-like events for lower-energy (sub-GeV) and higher-energy (multi-GeV) data samples. Comparison of data (solid
points), Monte Carlo expectations assuming no oscillations (hatched region, statistical errors) and results of the
best fit of νµ → ντ two-flavour oscillation model (bold line) with the flux normalization fitted as a free parameter.
Multi-GeV µ-like distributions are shown separately for events fully contained and partially contained in the detector
(two bottom-right plots). Image from [3].

muons from electrons but is not able to distinguish their charge and consequently neutrinos from
antineutrinos. The experiment reported a deficit of νµ(νµ) strongly varying with zenith angle1 θ

in accordance with the two-flavour νµ → ντ oscillation model (Fig. 2.1). The largest deficit was
observed for upward-going muons with cos θ < 0.

In the years 2001 [4] and 2002 [5], the solar neutrino deficit was finally explained by the re-
searchers from the Sudbury Neutrino Observatory (SNO) experiment led by Arthur B. McDonald.
They published evidence that total flux of neutrinos from the Sun is in agreement with the predic-
tions of the Solar Standard Model. The SNO detector was filled with 1 kt of ultra pure heavy water
(D2O) and allowed for detection of the solar neutrinos via the reactions

νe + D→ e− + p + p (CC), (2.4)
νx + D→ νx + p + n (NC), (2.5)
νx + e− → νx + e− (ES). (2.6)

Charged-current reactions (CC) (Eq. (2.4)) were sensitive only to νe and therefore provided the
flux of electron neutrinos, while neutral-current reactions (NC) were equally sensitive to νe, νµ and
ντ and measured the total neutrino flux. Additionally, elastic-scattering (ES) reaction, predomi-
nantly sensitive to νe, provided the information about the direction of the neutrino. The final SNO
measurement [24] of 8B solar neutrino flux is

φ = 5.25± 0.16(stat)+0.11

−0.13(sys)× 106 cm−2 s−1. (2.7)

The above result is in good agreement with predictions from Standard Solar Models [1, 2].

1θ is an angle between direction of lepton and local vertical line.
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The physicists: Takaaki Kajita leading the oscillation analysis in the Super-Kamiokande col-
laboration and Arthur B. McDonald from the SNO collaboration were awarded the Nobel Prize in
Physics in 2015 for their leading role in “the discovery of neutrino oscillations, which shows that neu-
trinos have mass”, while Raymond Davis Jr was awarded the Nobel Prize in 2002 for the detection
of solar neutrinos.

2.1. Three-flavour oscillations

Neutrino oscillation model [124, 129] describes the phenomenon that neutrinos can change their
types while traveling in space. In that model neutrinos of definite flavour produced in the weak
interactions are superpositions of the mass eigenstates

|να〉 =
3∑
j=1

U∗αj|νj〉, (2.8)

where να is a neutrino of flavour α = e, µ or τ, νj is a neutrino of definitive mass mj, and U is
the PMNS (Pontecorvo–Maki–Nakagawa–Sakata) leptonic mixing matrix. Similarly, every neutrino
mass eigenstate |νj〉 is the superposition of the states of definite flavour, |να〉:

|νj〉 =
∑

α=e,µ,τ

Uαj|να〉. (2.9)

Assuming that there are only three neutrino flavours, U is 3× 3 matrix, and can be written as

U =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (2.10)

In the Standard Model, mixing matrix U is unitary. However, if there are additional sterile neutrinos
that do not couple to Z or W boson (see Section 2.2), then the U matrix would be a submatrix of
bigger N ×N matrix and would not be unitary.

Squared elements of theUmatrix, |Uαj|2, describe the neutrino flavour-α fraction of νj (Fig. 2.2).
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Figure 2.2. Neutrino mass states as the combination of known flavour states. Left plot: normal mass hierarchy (ν1 and
ν2 states have lower mass than ν3). Right plot: inverted mass hierarchy. Squares of the elements of mixing matrix U,
|Uαi|2, describe flavour-α fractions of νi.
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Below, the 3σ C.L. (confidence level) ranges of the elements of the three-flavour mixing matrixU,
as derived from the three-neutrino fit based on data available in May 2016 (NuFIT 2.1) [121, 122],
are shown:

|U| =

0.798− 0.843 0.517− 0.584 0.137− 0.158

0.232− 0.520 0.445− 0.697 0.617− 0.789

0.249− 0.529 0.462− 0.708 0.597− 0.773

 . (2.11)

The numbers were produced under the assumption that the matrix U is unitary.
The PMNS matrix can be parameterized by introducing three mixing angles θij and CP-

violating phase δ. Symbol sij stands for sin θij and cij = cos θij:

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 . (2.12)

The matrix can also be rewritten as the product of the matrices shown below. Forth matrix has to
be added if neutrino is of Majorana (see Section 2.3) type. In this case two additional CP-violating
phases η and κ have to be introduced,

U =

 1 0 0

0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

 c12 s12 0

−s12 c12 0

0 0 1

 1 0 0

0 eiη 0

0 0 eiκ

 . (2.13)

The PMNS matrix can be used to calculate the probability that the neutrino of energy E, produced
as neutrino of flavour α, interacts as neutrino of flavour β after traveling in vacuum at the distance L
from a production point to the detector. The amplitude of the να → νβ transition is given by

A =
∑
j

U∗αje
−im2

jL

2E Uβj, (2.14)

and shown in the diagram in Fig. 2.3. Probability of transition να → νβ in vacuum is obtained by
squaring of the amplitude A

Pνα→νβ
(L,E) = |A|2

= δαβ − 4
∑
j>k

<e(U∗αjUβjUαkU
∗
βk) sin2

(
∆m2

jkL

4E

)

+ 2
∑
j>k

=m(U∗αjUβjUαkU
∗
βk) sin

(
∆m2

jkL

2E

)
. (2.15)

To obtain Eq. (2.15), the unitarity of U matrix was assumed. The ∆m2
jk ≡ m2

j −m2
k is the splitting

between the squared masses of νj and νk. It can be deduced from Eq. (2.15) that oscillation from
flavour α to β implies nonzero ∆m2

jk and therefore nonzero neutrino masses. The quantity

∆m2
jkL

4E
, (2.16)

on which the oscillation depends, can be written in a different form:

1.27
∆m2

jk(eV2)L(km)

E(GeV)
, (2.17)
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Figure 2.3. Amplitude A of the neutrino oscillations in vacuum. The figure is based on the diagram from [124].

if one inserts into the formula ~ and c factors omitted before. Therefore sin2
(

∆m2
jkL

4E

)
becomes

sin2
(

1.27
∆m2

jkL

E

)
. It has been found experimentally that ∆m2

12 ≡ δm2 (' 7.5 × 10−5 eV2) is much

smaller than ∆m2
32 ' ∆m2

31 ≡ ∆m2 (' 2.4× 10−3 eV2) (Fig. 2.2)1.
In the long-baseline accelerator experiments like MINOS+, the main detector is located several

hundred kilometers from the neutrino source and energies of neutrinos from the beam are in the GeV
region. In such experiments the oscillations are driven by the larger mass-squared difference ∆m2.
It is also known from the reactor [17–19] and accelerator [27, 28] experiments that θ13 parameter,
responsible for the appearance of νe in the beam of νµ, is small. Therefore, νµ are expected to turn
mostly into ντ and many features of the data can be described by an effective two-flavour model.
Probabilities of survival of muon neutrinos and appearance of tau neutrinos can be approximated
by the two-flavour formulae

Pνµ→νµ
≈ 1− sin2 2θ sin2

(
∆m2L

4E

)
(2.18)

and

Pνµ→ντ
≈ sin2 2θ sin2

(
∆m2L

4E

)
. (2.19)

In the three-flavour framework, oscillation probabilities depend on all the mixing parameters.
The leading order probabilities of survival of muon neutrinos in vacuum can be written in the
same form as in the two-flavour approximation (Eq. (2.18)) with the effective mixing angle and
∆m2 given by [13]:

1Detailed ranges of oscillation parameters allowed by existing neutrino data being the result of fit [122] to these
data are presented in Appendix A.
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sin2 2θ = 4 sin2 θ23 cos2 θ13(1− sin2 θ23 cos2 θ13),

∆m2 = ∆m2
32 + ∆m2

21 sin2 θ12

+ ∆m2
21 cos δCP sin θ13 tan θ23 sin 2θ12.

(2.20)

For neutrinos propagating in matter, oscillation probabilities can be substantially modified due
to the coherent forward elastic scattering of the neutrinos from the particles they encounter in
the medium [29]. Neutrino of any flavour (νe, νµ and ντ) traveling through matter can exchange
a Z boson with an electron or a nucleon. On the contrary, only νe can exchange a W boson with
an electron, and this difference between interactions with matter of νe and other neutrino flavours
gives rise to the modification of neutrino oscillations. As a result of the coherent forward scattering
of neutrino with matter, the energy E of neutrino state becomes E + V , where V is an interaction
potential energy. The V can be VW =

√
2GFne being the result of the scattering of νe via W exchange

or VZ = − 1
2

√
2GFnn related to the Z boson exchange. The VZ affects all neutrino flavours equally

and therefore has no impact on oscillations. Here, GF is the Fermi weak coupling constant, and
ne and nn are the electron and neutron densities in matter. Assuming two-neutrino case, with one
neutrino being νe, the probability of transition of one flavour state into another can be written in
the two-flavour form:

PM = sin2(2θM) sin2

(
∆m2

ML

4E

)
, (2.21)

with vacuum parameters θ and ∆m2 replaced by their in-matter equivalents:

sin2 2θM ≡
sin2 2θ

sin2 2θ + (A− cos 2θ)2
(2.22)

and
∆m2

M ≡ ∆m2

√
sin2 2θ + (A− cos 2θ)2, (2.23)

with matter effects described by the parameter A:

A ≡ VW/2

∆m2/4E
=

2
√

2GFneE

∆m2
31

. (2.24)

The sign of V is positive for neutrinos and negative for antineutrinos. Consequently, in the expressions
on ∆m2

M and sin2 2θM, a measure of importance of the matter effects – quantity A, has to be replaced
by −A and there is a difference between oscillation probabilities for neutrinos and antineutrinos
propagating in matter. In the long-baseline accelerator neutrino experiments, matter effects play the
biggest role in the study of appearance of electron neutrinos in the beam of muon neutrinos. In the
study of νµ disappearance or ντ appearance matter effects are negligible.

In Figs. 2.4 and 2.5, exact, not approximated standard oscillation probabilities for transitions
νµ → ντ, νµ → νe, together with probability that νµ does not change its type are plotted as
a function of L/E. Probabilities in Fig. 2.4 are for single neutrino energy E = 6.5 GeV. In real
experiment, however, the beam is not monoenergetic. This was taken into account in preparing
Fig. 2.5 where oscillation probabilities were convoluted with the energy spectra of the MINOS+
experiment (Fig. 1.1). The vertical lines in Fig. 2.5 mark the L/E regions for Near (ND) and Far
(FD) MINOS+ detectors. The Near Detector is located at the distance 1 km from the neutrino
source where three-flavour oscillations are not expected, while Far Detector is situated 735 km
away, in the region of maximum oscillations. In the absence of sterile neutrinos, the probabil-
ity that at any L muon neutrino will be detected as one of the active neutrinos is always equal
to the unity.
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Figure 2.4. Three-flavour neutrino oscillation probabilities as a function of L/E for monoenergetic beam of energy
E = 6.5 GeV corresponding to the mean reconstructed energy of charged-current, CC νµ interactions in the MINOS+
detectors. Values of ∆m2

32, ∆m2
21, θ12, θ13 and θ23 from [122].
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Figure 2.5. Three-flavour neutrino oscillation probabilities as a function of L/E for non-monoenergetic beam. Probabil-
ities were convoluted with MINOS+ energy distribution. Values of ∆m2

32, ∆m2
21, θ12, θ13 and θ23 from [122]. Vertical

lines mark the L/E regions for Near (ND) and Far (FD) MINOS+ detectors.

2.2. Sterile neutrinos

The name sterile neutrino was introduced by Bruno Pontecorvo in 1967 [101]. It is a neutral lepton
that does not take part in the weak interactions, but can mix with known active neutrinos νe, νµ

or ντ. However, it is not excluded that it takes part in Yukawa interactions involving the Higgs
boson or in the new physics interactions.

Sterile neutrino fields are introduced in many extensions of the Standard Model that provide
neutrino mass generation mechanism. These fields are fundamentally different from other fermion
fields, as they are invariant under the Standard Model symmetries: they are SU(3)C×SU(2)L×U(1)Y

singlet fields. The usual convention is to call the sterile neutrino fields “right-handed”, to distinguish
them from the Standard Model neutrino fields, which participate in the weak interactions through
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their left-handed chiral components. There are neither limits on number of sterile neutrinos nor on
their mass. Therefore, there are three active, left-handed neutrinos νeL, νµL,ντL and in general, there
can be Ns sterile right-handed neutrinos νs1R, . . .νNsR

.
It is not possible to observe the interactions of sterile neutrinos, but they can influence neutrino

oscillations. In the presence of Ns sterile neutrinos, the oscillation mixing matrix has to be extended
to the size (3 +Ns)× (3 +Ns) (Eq. (2.25))

U =


Ue1 Ue2 Ue3 Ue4 . . .

Uµ1 Uµ2 Uµ3 Uµ4 . . .

Uτ1 Uτ2 Uτ3 Uτ4 . . .

Us1 Us2 Us3 Us4 . . .
...

...
...

...
. . .

 . (2.25)

Expression on the transition να → νβ in vacuum in the model with sterile neutrinos is the same as
for three-flavour oscillations (Eq. (2.15)) described in Section 2.1. The formula would hold for any
number of neutrino flavours.

If sterile neutrinos exist, the mixing between sterile and active neutrino states must be small
and the new massive neutrinos must be mostly sterile in order not to spoil the very good agreement
of data from neutrino experiments with the three-neutrino oscillation model:

|Uαi|2 � 1 (α = e,µ, τ; i = 4, . . . , N). (2.26)

The experiments that study disappearance of νe or νe can probe the elements from the first
row of the neutrino mixing matrix, |Uei|. Similarly, the νµ or νµ disappearance experiments set
limits on |Uµi|. In comparison, appearance experiment in the channel να → νβ is sensitive to the
elements from two rows of the mixing matrix: |Uαi| and |Uβi|. In particular, limits on the mixing
of ντ with the sterile states (|Uτi|) can be obtained in the ντ appearance experiments that search
for the anomalous appearance of tau neutrinos in the beam of muon neutrinos and from the data
involving neutral-current (NC) interactions that allow to distinguish between νµ → ντ and νµ → νs

oscillations. There are many data sets that are used to set bounds on |Ue4|2 and |Uµ4|2. On the
contrary, only limited number of data can be used to constrain |Uτ4|2 and the corresponding limits
are not tight. Therefore, the possible mixing of active neutrino states with sterile neutrinos can be
the largest in the tau neutrino sector.

2.3. Neutrino masses

Neutrinos can oscillate only if they have non-zero masses, but in the Standard Model of strong
and electroweak interactions they are strictly massless. Therefore, after the discovery of neutrino
oscillations the theory had to be extended to describe neutrino mass generation [45, 129]. There
are numerous extensions of the Standard Model and many of them predict existence of right-handed
neutrino fields. Therefore, the hypothesis of sterile neutrino is theoretically well motivated.

Dirac masses

The simplest possibility to introduce neutrino mass is the generation of Dirac neutrino mass with
the same Higgs mechanism that is responsible for masses of other leptons and quarks in the Stan-
dard Model. In this approach, the new right-handed neutrino fields that are singlets under the SM
symmetries have to be introduced. The number of right-handed neutrino fields is not constrained by
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the theory, but the introduction of three right-handed fields would create, to a certain level, symme-
try between quark and lepton sectors. In such a case, the Higgs-lepton Yukawa Lagrangian can be
written as

LH,L = −
∑

α=e,µ,τ

ylαv√
2
lαlα −

3∑
k=1

yνk v√
2
νkνk −

∑
α=e,µ,τ

ylα√
2
lαlαH−

3∑
k=1

yνk√
2
νkνkH, (2.27)

where νk stands for Dirac neutrino fields

νk = νkL + νkR (k = 1, 2, 3) (2.28)

lα for charged lepton fields
lα = lαL + lαR (α = e,µ, τ), (2.29)

and H for Higgs field. Charged leptons and Dirac neutrinos couple to the Higgs field through the
third and the last term in Eq. (2.27), correspondingly. First and second terms are mass terms with
neutrino masses given by

mk =
yνk v√

2
, (2.30)

and masses of charged leptons defined as

mα =
ylαv√

2
, (2.31)

where v is the vacuum expectation value of Higgs field. The experimental limits on neutrino masses [1]
show that neutrino masses are a few orders of magnitude smaller than those of all other fundamental
particles, including electron. Therefore, in Dirac approach the values of the Higgs-neutrino Yukawa
couplings yνk have to be much smaller than ylα couplings of charged leptons with the Higgs and the
origin of huge difference in masses of charged and neutral leptons remains unknown.

Majorana masses

There is an interesting possibility that neutrinos are Majorana particles. In such a case Majorana
fields of massive neutrinos

νk = νkL + νc
kL, (2.32)

satisfy the condition
νck = νk, (2.33)

where νc
k is the charge conjugated field. In case of three generations of massive Majorana neutrinos,

the Majorana Lagrangian mass term can be written as:

L Majorana
mass =

1

2

3∑
k=1

mkν
T
kLC

†νkL + H.c., (2.34)

where C is the unitary charge-conjugation matrix, with CγT
µC
−1 = −γµ and CT = −C or as

L Majorana
mass = −1

2

3∑
k=1

mkν
c
kLνkL + H.c. (2.35)
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Dirac–Majorana mass term

It is known that the νL exist, because neutrinos take part in the SM weak interactions. If there are
no νR, the only possible mass term in the Lagrangian is the Majorana mass term (for simplicity only
one neutrino generation, νL and νR, is considered here):

L L
mass =

1

2
mLν

T
LC
†νL + H.c. (2.36)

However, if νR exists as well, the Lagrangian can additionally contain Dirac mass term (ν = νL + νR):

L D
mass = −mDνν = −mD(νRνL + νLνR) = −mDνRνL + H.c. (2.37)

and Majorana mass term for νR

L R
mass = −1

2
mRν

T
RC
†νR + H.c. (2.38)

Therefore, in general it is possible that Dirac and Majorana terms are both present. If one defines
column matrix of left-handed neutrino fields

NL =

(
νL

νc
R

)
=

(
νL

CνT
R

)
, (2.39)

and uses the relation νc
L = −νT

LC
†, the Dirac–Majorana mass term can be written as

L M+D
mass = L L

mass + L R
mass + L D

mass =
1

2
NT

LC
†MNL + H.c., (2.40)

where M is a symmetric mass matrix

M =

(
mL mD

mD mR

)
. (2.41)

In order to find the mass eigenstates one has to diagonalize the mass matrix with a unitary trans-
formation

NL = UnL, (2.42)

where nL is a column matrix of left-handed massive neutrino fields:

nL =

(
ν1L

ν2L

)
. (2.43)

The unitary matrix U is such that

UTMU =

(
m1 0

0 m2

)
, (2.44)

with real and positive mi. After the transformation defined in Eq. (2.42), the Dirac–Majorana term
from Eq. (2.40) can be written as

L M+D
mass =

1

2

∑
k=1,2

mkν
T
kLC

†νkL + H.c. = −1

2

∑
k=1,2

mkνkνk, (2.45)
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with the massive Majorana neutrino field:

νk = νkL + νc
kL = νkL + CνT

kL. (2.46)

Therefore, in the general case massive neutrinos are Majorana particles. There are, however, several
special cases:
• The pure Dirac case, mL = mR = 0, where pair of Majorana fields form a Dirac neutrino.
• The pseudo-Dirac case, mD � |mL|,mR, with small shift between masses and
m2,1 ' mD ± mL+mR

2
.

• The see-saw case, mD � mR,mL = 0 that leads to a heavy, mostly sterile state ν1 with
m1 ' mR and a very light, mostly active state ν2 with mass m2 ' m2

D

mR
. The see-saw mechanism

thus provides the good explanation of smallness of neutrino masses.
• The pure Majorana case, mD = 0, when there is no mixing between the active and sterile
neutrino states.
The mass matrix and Lagrangian mass terms can be generalized for the bigger number of

neutrinos, where number of sterile neutrinos does not have to be equal three. For the three active
left-handed flavour neutrino fields νeL,νµL,ντL and Ns sterile right-handed flavour neutrino fields,
after diagonalization of the mass matrix, the Dirac–Majorana Lagrangian mass term takes the form

L M+D
mass = −1

2

N∑
k=1

mkνkνk, (2.47)

where N = 3 +Ns.

2.4. Oscillations between active and sterile neutrino states

The simplest model that includes sterile neutrinos is the model with 3 active neutrinos and 1 sterile
neutrino, called further 3+1 model. The mixing matrix is then a 4× 4 unitary matrix with 9 param-
eters: 6 mixing angles and 3 oscillation-relevant CP-violating phases. In addition to the three known
mixing angles θ12, θ23, θ13 and one CP-violating phase δ ≡ δ1, the 3+1 model introduces three new
mixing angles θ14, θ24, θ34 and two phases δ2 and δ3. The presence of one additional massive neutrino
leads to the three new mass-squared differences: ∆m2

41, ∆m2
42, and ∆m2

43, but only one of them is
independent of the mass-squared differences of the three-flavour model. The results of the MINOS
and MINOS+ sterile analyses are presented as a function of ∆m2

41.
In the accelerator experiments, mixing with sterile neutrinos would be seen in certain regions of

L/E as a depletion of charged-current (mediated by W boson) CC νµ and neutral-current (mediated
by Z boson) NC events or anomalous appearance of ντ or νe events. Example of the 3+1 oscillation
probabilities as a function of L/E, for neutrino energy E = 6.5 GeV, ∆m2

41 = 10 eV2, θ14 = 0.2,
θ24 = 0.2, θ34 = 0.6, δi = 0, with matter effects included is shown in Fig. 2.6. Values of ∆m2

32, ∆m2
21,

θ12, θ13 and θ23 were taken from [122]. Contrary to the three-flavour oscillations, the probability of
transformation of νµ from accelerator into an active neutrino of any flavour does not have to be equal
to the unity. The fact that neutrino beam is non-monoenergetic makes the oscillation probabilities in
a function of L/E look smoother (Fig. 2.7) than in the ideal, monoenergetic case (Fig. 2.6). Similarly
as in Fig. 2.5, in the Fig. 2.7 oscillation probabilities were convoluted with the energy spectra of
the MINOS+ experiment. The vertical lines mark the MINOS+ L/E regions, while black arrows
indicate L/E value corresponding to the maximum rate of events in the Near and Far MINOS+
detectors. The set of Figs. 2.8, 2.9, 2.10 and 2.11 demonstrate the effect of changes of ∆m2

41 on
the neutrino flux observed in the two detectors of the MINOS+ experiment, for the same example
values of mixing angles not excluded by the existing data, as in Figs. 2.6 and 2.7.


