Paweł Zaręba

Opanuj sieci — w praktyce!

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz Wydawnictwo HELION dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor oraz Wydawnictwo HELION nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Redaktor prowadzący: Małgorzata Kulik

Projekt okładki: Studio Gravite / Olsztyn Obarek, Pokoński, Pazdrijowski, Zaprucki

Grafika na okładce została wykorzystana za zgodą Shutterstock.com

Wydawnictwo HELION ul. Kościuszki 1c, 44-100 GLIWICE tel. 32 231 22 19, 32 230 98 63 e-mail: *helion@helion.pl* WWW: *http://helion.pl* (księgarnia internetowa, katalog książek)

Drogi Czytelniku! Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres *http://helion.pl/user/opinie/ksipra* Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

ISBN: 978-83-283-4852-3

Copyright © Helion 2019

Printed in Poland.

Kup książkę

Poleć książkę

Oceń książkę

Księgarnia internetowa

• Lubię to! » Nasza społeczność

Spis treści

Wstęp	.7
Pozdział 1. Wnrowadzonio do sioci w nigułco — niozbodnik	
administratora sieci	11
Model ISO OSI	11
Warstwa 7 — warstwa aplikacii (L7)	11
Warstwa 6. — warstwa prezentacji (1.6)	12
Warstwa 5. — warstwa sesii (L5)	13
Warstwa 4. — warstwa transportu (L4)	13
Warstwa 3. — warstwa sieci (L3)	13
Warstwa 2. — warstwa łacza danych (L2)	14
Warstwa 1. — warstwa fizyczna (L1)	14
Enkapsulacja/dekapsulacja	14
Rozdział 2. Segmentacja sieci, czyli VLAN-y 2	21
Dzielimy sieć na kawałki — dwa VLAN-y	31
Komunikacja między VLAN-ami z zastosowaniem łącza trunk	35
Rozdział 3. Dostęp do internetu na bazie DSL oraz dial-up 4	41
Rozdział 4. Awaria w sieci LAN okiem admina — jak sobie poradzić?	71
Rozdział 5. VoIP — darmowe połączenia telefoniczne w oddziale firmy9	95
Rozdział 6. VoIP między oddziałami — topologia fizyczna i logiczna 11	15
Rozdział 7. Redundancja w sieci: EtherChannel plus HSRP13	33

Rozdział 8. Zdalny monitoring domu, czyli loE w praktyce	153
Rozdział 9. Poczta i internet w smartfonie, czyli projekt sieci mobilnej	179
Rozdział 10. MPLS i VPN — komunikacja między oddziałami firmy	197
Rozdział 11. QoS, NetFlow i RADIUS w akcji, czyli trochę sieciowych technologii w praktyce	223
Rozdział 12. loT w praktyce — inteligentny dom	239
Rozdział 13. Sieć w hotelu z wykorzystaniem kontrolera Wi-Fi oraz zapory ogniowej	259
Skorowidz	281

Rozdział 9. **Poczta i internet** w smartfonie, czyli projekt sieci mobilnej

W dzisiejszych czasach, w świecie elektroniki, mediów społecznościowych i internetu, ciężko nam wyobrazić sobie funkcjonowanie bez telefonów, tabletów czy laptopów. Rozdział ten został zainspirowany właśnie otaczającą nas rzeczywistością. Będzie on interesujący dla każdego, kto kiedykolwiek zastanawiał się, dzięki jakim mechanizmom możemy w naszych smartfonach czy tabletach odbierać pocztę mailową i surfować po internecie.

Analiza zawartych w rozdziale odpowiedzi umożliwi każdemu nie tylko poznanie mechanizmów działania sieci mobilnej i jej części składowych, ale także samodzielne skonstruowanie działającej sieci dla swoich własnych potrzeb. Prawidłowo wykonany projekt (rysunek 9.1) umożliwi otworzenie strony WWW w smartfonie i wysłanie z niego maila.

W niniejszym projekcie wykorzystamy część infrastruktury, którą już wcześniej zbudowaliśmy wspólnie. Mam tu na myśli chmurę Internet oraz chmurę ISP. W tej chmurze dostawca usług internetowych oferuje swoje usługi oraz łączy się dalej z internetem. W naszym projekcie to operator uruchomił dodatkowy serwer pocztowy dla swoich klientów.

Rysunek 9.1. Wizualizacja projektu

Poniżej przedstawiony został schemat połączeń, który znajduje się w chmurze Internet. Jest tutaj infrastruktura naszego operatora z kilkoma serwerami i dodatkowo występuje połączenie z kolejną chmurą Internet. To oznacza, że nasz operator także korzysta z zasobów internetu. Chmura operatora, czyli nasze źródło internetu, łączy się z kolejną chmurą innych operatorów. W ten sposób działa internet (rysunek 9.2).

RYSUNEK 9.2. Podłączenie ISP do internetu

Zajmijmy się teraz dodaniem serwera pocztowego w domenie *hobbit.com* oraz jego konfiguracją.

Aby dodać serwer pocztowy, należy wybrać serwer w menu i go dodać, skonfigurować port Fast Ethernet oraz podłączyć do routera ISP 1.

Jak pamiętasz z rozdziału 2., do routera ISP 1 dołączyliśmy moduł HWIC-4ESW. Dostarczył nam on 4 porty switchowe, które są w tym samym VLAN-ie. Dzięki temu gdy chcemy (operator ISP 1) dodać kolejne serwery, wystarczy tylko zaadresować i podłączyć serwer.

W pierwszej kolejności dodajemy VLAN 10 oraz porty do tego VLAN-u.

Sprawdzamy konfigurację VLAN-ów i portów we VLAN-ie na routerze (sh vlan-switch) (rysunek 9.3).

ryaicai	COIL	ing CEI	Attibute									
					IOS Comn	nand Line Inte	erface					
Route	er#show	/ vlan-swi	tch									^
VLAN	Name				Stat	tus Po:	rts					
,											-	
10	VLAN00	010			act:	ive Fa	0/3/0	Fa0/3/1	Fa0/3	/2. Fa0	/3/3	
1002	fddi-d	default			act:	ive	-, -, -,	,, ., .,	, , _ ,	-,	, ., .	
1003	token-	-ring-defa	ult		act:	ive						
1004	fddine	et-default			act:	ive						
1005	trnet-	-default			act:	ive						
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Transl	Trans2	1	
1	enet	100001	1500	-	-	-	-	-	0	0		
10	enet	100010	1500	-	-	-	-	-	0	0		
1002	fddi	101002	1500	-	-	-	-	-	0	0		
1003	tr	101003	1500	-	-	-	-	-	0	0		
1004	fanet	101004	1500	_	_	-	ibm	-	0	0		
1005	urneu	101005	1300				TOW		0	0		
VLAN	Type	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Transl	Trans2	1	
Remot	ce SPA1	VLANs										
Prima	arv Sed	condarv Tu	rpe		Ports							
												v
								_				_

RYSUNEK 9.3. Wyświetlenie konfiguracji VLAN-u na routerze

Jak widać, status jest poprawny.

W naszym przykładzie podłączamy serwer pocztowy do portu Fa0/3/1 routera ISP 1. Następnie ustawiamy adres IP serwera 192.168.0.6 z maską 255.255.255.0. Adres bramy domyślnej to 192.168.0.1, natomiast serwera DNS 192.168.0.5. Ustawienia muszą być statyczne, ponieważ jest to serwer (rysunek 9.4).

Ostatni krok to uruchomienie usługi pocztowej. Aby to zrobić, wchodzimy na serwer i przystępujemy do następującej konfiguracji (rysunek 9.5).

W zakładce *Services* (usługi) klikamy *EMAIL*. SMTP Service to serwer poczty wychodzącej, a POP3 to serwer poczty przychodzącej. Obie usługi uruchamiamy na jednym serwerze. Oczywiście, można rozdzielić to na osobne serwery. Kolejny punkt naszej konfiguracji to ustawienie własnej domeny, czyli nazwy, jaką wykupiliśmy. W Polsce istnieje wiele firm, które sprzedają nazwy domenowe. W naszym projekcie nazwa domeny to *hobbit.com*. Jest to tylko przykładowa nazwa, niezwiązana w żaden sposób z rzeczywistą domeną. Kolejnym krokiem jest stworzenie kont dla naszych użytkowników oraz haseł. Dodałem 2 konta oraz te same hasła "xyz123".

Physical Config	Services	Desktop	Programming	Attributes		
P Configuration						Х
IP Configuration						
		● St	atic			
IP Address		192.1	68.0.6			
Subnet Mask		255.255.255.0 192.168.0.1				
Default Gateway	192.168.0.1					
DNS Server	192.168.0.5					
IPv6 Configuration						
	🔿 Aut	o Config		Static		
IPv6 Address					/	
Link Local Address		FE80	::201:63FF:FE1A	:BC5C		
IPv6 Gateway						
IPv6 DNS Server						

RYSUNEK 9.4. Konfiguracja IP serwera poczty

🔍 Serwer poczty					-		\times
Physical Config Services Deskto	p Programming	Attributes					
SERVICES HTTP DHCP DHCP DHCP SYSLOG AAA NTP EMAIL FTP JoT VM Management	SMTP Service ON hobbit.com	OFF	EMAIL	POP3 Service ON		Set + - Change assword	
Пор							

RYSUNEK 9.5. Konfiguracja ustawień usługi poczty

Konfiguracja serwera WWW wykonana została w poprzednich projektach. Sposób uruchomienia serwera WWW znajduje się w poniższej zakładce *Services*. Należy włączyć usługę HTTP oraz HTTPS (rysunek 9.6).

SERVICES		HTTP	
HTTP		LITTE	
DHCP	HIP	HIPS	
DHCPv6	● On Off	On	○ off
TFTP			
DNS	File Manager		
SYSLOG	File Name	Edit	Delete
AAA	1 copyrights.html	(edit)	(delete)
NTP			
EMAIL	2 cscoptlogo 177x111.jpg		(delete)
FTP	2 google2 ing		(delete)
IoT	5 googic2.jpg		(delete)
VM Management	4 helloworld.html	(edit)	(delete)
	5 image.html	(edit)	(delete)
	6 index.html	(edit)	(delete)

RYSNEK 9.6. Konfiguracja usługi WWW

Widoczny jest tam plik główny o nazwie *index.html*, którego zawartość możemy zmodyfikować, korzystając z przycisku *Edit* (edytuj), tak żeby wyświetlał obrazek. Obrazek został zaimportowany do programu za pomocą przycisku *Import* i będzie symulował stronę wyszukiwarki Google:

```
<html>
<img src="/google2.jpg"/>
</html>
```

Konfiguracja serwera pocztowego jest już gotowa od strony serwera. Aby projekt był nieco bardziej interesujący, postawimy dodatkowy serwer w internecie. Jak wiemy, w chmurze Internet znajduje się serwer http, który obsługuje żądania WWW dotyczące strony *www.google.pl.* To właśnie w tej chmurze dodajemy nowy serwer poczty. Dodajemy go w ten sam sposób, jak serwer w domenie *hobbit.com*. W chmurze ISP 3 jest VLAN 200, który ma swój interfejs SVI, oraz kolejny VLAN 100 dla obsługi połączenia z chmurą ISP 2. Sprawdźmy VLAN-y na routerze ISP 3 (rysunek 9.7).

VLAN											1
	Name				Sta	tus Po	rts				
1	defaul	Lt			act:	 ive Fa Fa	0/0/2,	, Fa0/0/3	, Fa0/1,	/1, Fa0/	1/2
100 200 1002 1003 1004 1005	VLAN01 VLAN02 fddi-o token- fddine trnet-	100 200 -ring-defau et-default -default	lt		act: act: act: act: act:	ive Fa ive Fa ive ive ive ive ive	0/1/3 0/1/0 0/0/0,	, Fa0/0/l			
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Transl	Trans2	
1	enet	100001	1500	_	_	-	_		0	0	
100	enet	100100	1500	-	-	-	-	-	0	0	
200	enet	100200	1500	-	-	-	-	-	0	0	
1002	fddi	101002	1500	-	-	-	-	-	0	0	
1003	tr	101003	1500	-	-	-	-	-	0	0	
1004	fdnet	101004	1500	-	-	-	ieee	-	0	0	
1005	trnet	101005	1500	-	-	-	ibm	-	0	0	
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Transl	Trans2	
Domot	o CDAN	T TIT AND									

RYSUNEK 9.7. Wyświetlenie konfiguracji VLAN-ów

VLAN 100 ma jeden interfejs podłączony do ISP 2. Do VLAN-u 200 jest podłączona chmura Internet, w której znajdują się nasze serwery Google. Powinniśmy sprawdzić teraz adresację interfejsów. Jak widać na rysunku 9.8, interfejsy należące do VLAN-u 100 nie mają przypisanych adresów IP, natomiast są w stanie up/up. Oznacza to, że port jest aktywny w warstwie pierwszej i drugiej (Status/Protocol). Dodatkowo interfejsy VLAN-owe są zaadresowane (interfejsy SVI) i są także w stanie up/up. Interfejs Fa0/1/0 też jest w stanie up/up i odpowiada za komunikację w ISP 2 (rysunek 9.8).

Fizyczna topologia ISP 3 wygląda następująco: router + 2 VLAN-y oraz 2 serwery (rysunek 9.9).

Wykonajmy teraz testy połączeń pomiędzy serwerem ISP 2 a ISP 3 oraz ze Smartfon 1 do serwera WWW firmy Google. Chodzi tutaj o testy połączeń za pomocą protokołu ICMP.

184

.,	Attributes				
	IOS Co	mmand Line Interf	face		
Pouterfshow in inter	face brief				^
Interface	IP-Address	OK? Method	Status	Protocol	
GigabitEthernet0/0	unassigned	YES unset	up	down	
GigabitEthernet0/1	unassigned	YES unset	up	down	
FastEthernet0/0/0	unassigned	YES unset	up	up	
FastEthernet0/0/1	unassigned	YES unset	up	up	
FastEthernet0/0/2	unassigned	YES unset	up	down	
FastEthernet0/0/3	unassigned	YES unset	up	down	
FastEthernet0/1/0	unassigned	YES unset	up	up	
FastEthernet0/1/1	unassigned	YES unset	up	down	
FastEthernet0/1/2	unassigned	YES unset	up	down	
FastEthernet0/1/3	unassigned	YES unset	up	down	
Vlanl	unassigned	YES unset	administratively down	n down	
Vlan100	150.150.10.2	YES manual	up	up	
Vlan200	140.140.10.1	YES manual	up	up	
Router#					
Router#					\sim

RYSUNEK 9.8. Status interfejsów routera ISP 3

RYSUNEK 9.9. Podłączenie serwerów do ISP 3

Packet Tracer umożliwia nam szybie wysłanie pakietu ICMP. W menu narzędziowym po prawej stronie znajduje się przycisk umożliwiający przesłanie jednego pakietu ICMP (rysunek 9.10).

RYSUNEK 9.10.

Symbol pakietu

-			

Status pakietu sprawdzamy w dolnej części ekranu. Po wybraniu "koperty z plusem" wystarczy wybrać urządzenie i kliknąć, a następnie wybrać drugie urządzenie. W ten sposób zamykamy obwód i wysyłamy pakiet. Oto nasze wyniki (rysunek 9.11).

185

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete
•	Successful	ISP 1	ISP 3	ICMP		0.000	Ν	0	(edit)	(delete)
•	Successful	Smartphone 1	Serwer Google 1 (www)	ICMP		0.000	N	1	(edit)	(delete)

RYSUNEK 9.11. Pakiet wysłany prawidłowo

Status *successful* oznacza pomyślne wysłanie pakietu. Przycisk *Fire* może zostać ponownie naciśnięty, aby wykonać tę samą procedurę.

Gdy dodajemy nowy serwer, należy pamiętać, że trzeba wykonać zmiany w serwerach DNS. Ponieważ serwer naszego operatora ISP 2 nie wie, co kryje się pod nazwą *google.pl* lub *www.google.pl*, trzeba dodać nowe rekordy A (czyli rekord adresowy). Oto struktura DNS operatora ISP 2 (rysunek 9.12).

SERVICES	~		DNS		
HTTP	DNS Service		On	○ off	
DHCP			0	0.5	 _
DHCPv6	Resource Recor	ds			
TFTP	Name			Type A Record	,
DNS					
SYSLOG	Address				
AAA			_	-	 ÷.
NTP		Add	Save	Remove	
EMAIL	No.	Name	Туре	Detail	٦
FTP		accelo al	A Decord	140 140 10 11	
IoT	1	bobbit.com	A Record	190, 190, 10, 11	
VM Management	2	www.google.pl	A Record	140 140 10 10	
	DNC Casha				

Rysunek 9.12. Konfiguracja DNS u operatora

Dodatkowo trzeba uruchomić/dodać usługę DNS na serwerze Google (140.140.10.11), ponieważ musi ona wiedzieć, gdzie znajduje się serwer *hobbit.com*. Oto serwer DNS Google i jego struktura u operatora ISP 3 (rysunek 9.13).

Uruchomiliśmy serwery pocztowe u operatorów. Serwery są zaadresowane oraz fizycznie podłączone do poszczególnych sieci operatorów ISP 2 oraz ISP 3. Wszystko jest umieszczone do wglądu, dla porządku w pojedynczych chmurach.

Możemy teraz przystąpić do analizy projektu z perspektywy użytkownika telefonu komórkowego/smartfonu. Akcesoria typu *endpoint devices*, czyli urządzenia końcowe takie jak laptopy, telefony, serwery, drukarki itp., znajdują się w panelu (rysunek 9.14).

vsical Config	Services Deskt	op Programming Attribu	utes			
	_		DNE			
SERVICES	^		DIVS			 _
HTTP	DNS Service		On	○ off		
DHCP						_
DHCPv6	Resource Re	cords				
TFTP	Name			Type A Record	1	•
DNS				L		
SYSLOG	Address					
AAA		للم	Caus	Ber		
NTP		Auu	Save	Re	nove	
EMAIL	No.	Name	Typ	pe Dei	;ail	
FTP	0	hobbit.com	A Record	192 168 0 6		
IoT	Ŭ	hobbic.com	Anceolo	192.100.0.0		
/M Management						
	V DNS Cache					

RYSUNEK 9.13. Konfiguracja DNS serwera w internecie

Rysunek 9.14. Panel urządzeń końcowych

Wybieramy jeden bezprzewodowy tablet, na którym nasz klient będzie miał skrzynkę pocztową w domenie "google.pl", oraz dwa smart device, które będą w domenie *hobbit.com*. Nasze urządzenia mają dwa typy podłączenia się do sieci bezprzewodowej: za pomocą Wi-Fi oraz sieci 3G/4G. W naszym projekcie korzystamy z drugiej opcji, ponieważ chcemy zasymulować dostęp do mobilnej sieci komórkowej 3G. Dlatego też użyliśmy stacji nadawczoodbiorczej (Cell Tower).

Wszelkie komponenty sieci bezprzewodowej znajdziemy tutaj. Są to punkty dostępowe, bramy, wieże nadawcze, routery Wi-Fi (rysunek 9.15).

RYSUNEK 9.15. Panel urządzeń bezprzewodowych

Celem stacji jest objęcie zasięgiem jak największego obszaru. Jeśli chodzi o szczegóły połączeń sieci mobilnych, zachęcam do lektury specjalistycznej literatury. Musimy jednak wiedzieć, jak przesyłane są sygnały. Moc stacji nadawczo-odbiorczej jest proporcjonalna do zasięgu. Każdy operator sieci mobilnej pracuje w zakresie odpowiednich częstotliwości radiowych, które są wykupywane w ramach licencji. Do przesyłu danych operator może używać różnych technologii; może to być np. UMTS/HSDPA/EDGE. Ze względu na dużą liczbę 188

urządzeń mobilnych operatorzy przyznają urządzeniom adresy IPv6, dzięki czemu nie muszą obawiać się wyczerpania puli. W naszym projekcie także serwer operatora rozdaje takie adresy i dodatkowo adresy IPv4. Jeśli chodzi o konfigurację serwera CO (operatora), Packet Tracer automatycznie uruchamia serwer DHCP i DHCPv6, jeden dla komunikacji wewnętrznej, a drugi dla zewnętrznej. Także nasze smartfony powinny mieć konfigurację IP ustawioną jako DHCP w zakładce *3G/4G* (nie Wireless!). Należy wcześniej też wyłączyć sieć WLAN na karcie smartfonu. Wieża nadawczo-odbiorcza komunikuje się radiowo z urządzeniami końcowymi. Od strony infrastruktury sieciowej przewodowej wieża łączy się z serwerem CO (Central Office) radiowo lub za pomocą kabla koncentrycznego. W naszym projekcie użyliśmy kabla koncentrycznego oznaczonego przez niebieską linię w kształcie błyskawicy. Wieża nie oferuje zbyt wielu opcji konfiguracji. Przechodzimy do serwera CO. Ustawiamy konfigurację "backbone", czyli sieci szkieletowej — interfejs takiej sieci ma adres 192.168.3.100 i łączy się logicznie z routerem ISP, który ma adres 192.168.3.1 (rysunek 9.16).

GLOBAL	A	Backbone Settings	
Settings	IP Configuration		
Algorithm Settings	O DHCP		
INTERFACE	Static		_
Backbone	IP Address	192.168.3.100	
Cell Tower	Subnet Mask	255.255.255.0	
	Default Gateway	192.168.3.1	
	DNS Server	192.168.0.5	
	IPv6 Configuration DHCP Auto Config Static IPv6 Address Link Local Address: FE8 IPv6 Gateway)/ 30::20A:F3FF:FE9C:D601	

RYSUNEK 9.16. Konfiguracja IP szkieletu CO

Powyżej statyczna konfiguracja adresu IP oraz serwera DNS po stronie operatora. Ustawienia interfejsu Cell Tower są automatyczne (rysunek 9.17).

🐙 Serwer ISP			—	\times
Physical Config Se	ervices Attributes			
GLOBAL	A	Tower Interface		
Settings	IP Configuration			
Algorithm Settings	IP Address	172.16.1.1		
INTERFACE	Subnet Mask	255.255.255.0		
Backbone	IPv6 Configuration			
Cell Tower	IPv6 Address Link Local Address: FE80::2	01:63FF:FE60:32B2	/	
Пор	·] [

Rysunek 9.17. Konfiguracja IP wieży nadawczej

Ustawienia DHCP/DHCPv6 możemy modyfikować pod względem wykorzystywanej puli adresów. Nie możemy wyłączyć DHCP. Należy dodać tylko adres serwera DNS: 192.168.0.5 do konfiguracji DHCP. Aby zweryfikować poprawność połączeń smartfon <-> wieża <-> serwer CO, należy wejść do zakładki *Services* i następnie nacisnąć przycisk *Cell Tower*. Po kliknięciu naszej wieży zobaczymy, jakie urządzenia są w zasięgu i podłączone. Widać tutaj dwa urządzenia typu smart device oraz jeden tablet. Wszystkie urządzenia mają widoczny adres MAC (rysunek 9.18).

Physical Config	Services Attributes			
SERVICES		Cell T	ower Service	
CELL TOWER				
DHCP				
DHCPv6			Refresh	1
PAP/CHAP		C- T		
		Cell Tower		
	Cell Tower			
	Cell Device Name	Cell Device UUID	Cell Tower Name	
	1 Tablet	000A.F3AA.C210	Cell Tower	
	1 Tablet 2 Smartphone 1	000A.F3AA.C210 0060.70C0.A71D	Cell Tower Cell Tower	
	1 Tablet 2 Smartphone 1 3 Smartphone 2	000A.F3AA.C210 0060.70C0.A71D 00D0.58C5.D822	Cell Tower Cell Tower Cell Tower	

RYSUNEK 9.18. Urządzenia podłączone do wieży nadawczej

W projekcie użyliśmy dwóch repeaterów. Po co? W normalnych, rzeczywistych warunkach taka wieża może być np. na szczerym polu, na wzgórzu z dala od cywilizacji. Natomiast infrastruktura operatora jest w mieście. Dlatego z pomocą przychodzą nam łącza światłowodowe, które przesyłają dane na kilometry. Wieża łączy się kablem koncentrycznym z serwerem CO ISP. Serwer ten może znajdować się np. blisko wieży. Następnie serwer łączy się właśnie z repeaterem kablem miedzianym, a następnie światłowodem. Aby dodać moduł PT-REPEATER-NM-1FGE, należy oczywiście wyłączyć repeater. Moduł ten umożliwi nam przesyłanie gigabitów danych w ciągu sekundy (1000BFX) łączem optycznym na długie dystanse. Jeden repeater jest podłączony z drugim blisko siedziby firmy. Następnie łączem miedzianym od repeatera 1 do chmury Internet, gdzie łączy się z routerem ISP i portem Eth0/2/0 (192.168.3.1). Widok repeatera wraz z modułami (rysunek 9.19).

RYSUNEK 9.19. Repeater

Wszelkiego rodzaju urządzenia, typu huby, splitery (rozgałęźniki) oraz repeatery, znajdują się w submenu (rysunek 9.20).

RYSUNEK 9.20. Panel urządzeń dodatkowych

Cała infrastruktura jest prawidłowo podłączona. Konfiguracja internetu oraz od strony operatora ISP jest także gotowa i sprawdzona w poprzednich rozdziałach. Możemy przystąpić do testowania naszej sieci. Dlatego zaczniemy krok po kroku analizować działanie naszego projektu. Zanim to zrobimy, zróbmy krótkie podsumowanie, co nowego jest w projekcie — czyli przegląd ustawień i konfiguracji:

- Dodanie i uruchomienie 3G/4G na smartfonach z adresacją DHCP.
- Dodanie i podłączenie wieży nadawczo-odbiorczej.
- Podłączenie i skonfigurowanie serwera CO.
- Podłączenie repeaterów łączem światłowodowym.
- Podpięcie infrastruktury mobilnej do chmury operatora.
- Dodanie 2 serwerów i konfiguracja poczty.
- Dodanie portów do VLAN-ów.
- Dodanie nowych wpisów DNS.

Przystąpmy zatem do szybkiego przetestowania działania internetu. Uruchamiamy Smartfon 1 (rysunek 9.21).

RYSUNEK 9.21. Smartfon 1

Sprawdzamy ustawienia DHCP i DHCPv6. Jak widać, nasz smartfon otrzymał adres IPv4 oraz adres IPv6. Zauważmy, iż zakładka *Interface* jest ustawiona na 3/4G Cell 1 (rysunek 9.22).

hysical Config Des	ktop Programming	Attributes			
P Configuration					Х
nterface 3G/40	G Cell 1				
IP Configuration					
DHCP		⊖ Static			
IP Address		172.16.1.104			
Subnet Mask		255.255.255.0			
Default Gateway		172.16.1.1			
DNS Server		192.168.0.5			
IPv6 Configuration					
OHCP	🔿 Auto Co	nfig 🔷 Static			
IPv6 Address		2001::20C:85FF:FE57:1597	/	64	
Link Local Address		FE80::20C:85FF:FE57:1597			
IPv6 Gateway		FE80::201:63FF:FE60:32B2			
IPv6 DNS Server					

RYSUNEK 9.22. Konfiguracja IP sieci 3G/4G

Jak wiemy, połączenie ICMP między Smartfon 1 a serwerem Google działało. Teraz przechodzimy do uruchomienia przeglądarki i wpisujemy *www.google.pl.*

Zatrzymajmy się sekundkę tutaj i zróbmy szybką analizę ruchu sieciowego. Klient w przeglądarce wpisuje adres strony. Dlatego też wysyła do serwera DNS zapytanie, jakie IP ma adres *www.google.pl.* W tym miejscu adres źródłowy to 172.16.1.102, natomiast docelowy 192.168.0.5. Adres nie znajduje się w podsieci 172.16.1.0/24. Zapytanie zostało przekazane do bramy domyślnej, czyli 172.16.1.1, do wieży. Wieża następnie przesyła je do serwera CO. Jest ona właściwie tylko przekaźnikiem. Otrzymawszy pakiet, serwer CO ma skonfigurowany adres serwera DNS — jest to 192.168.0.5 — więc przesyła pakiet, zastępując adres źródłowy swoim adresem, czyli 192.168.3.100.

Zanim router ISP otrzyma pakiet, dane są przesyłanie przez repeater łączem światłowodowym. Router ISP otrzymuje pakiet i sprawdza w swojej tablicy ARP, że ten adres serwera DNS jest we VLAN-ie 10, dlatego następnym skokiem jest serwer DNS. Serwer DNS znalazł adres odpowiadający stronie WWW, dlatego odsyła odpowiedź tą samą drogą. Smartfon otrzymał odpowiedź od serwera DNS i zna już adres IP serwera WWW, który przechowuje stronę. Teraz może przystąpić do nawiązania sesji TCP z serwerem 140.140.10.10 na porcie 80.

Ne ISP 1	_		\times
Physical Config CLI Attributes			
IOS Command Line Interface			
<pre>Router>en Router#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external t E1 - OSPF external type 1, E2 - OSPF external type 2, E - i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - I area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is 0.0.0.0 to network 0.0.0.0 150.150.0.0/30 is subnetted, 1 subnets C 150.150.10.0 is directly connected, FastEthernet0/1 C 192.168.0.0/24 is directly connected, Vlan10 C 192.168.3.0/24 is directly connected, Ethernet0/2/0 S* 0.0.0.0/0 is directly connected, FastEthernet0/1</pre>	B - BGP area ype 2 EGP S-IS inte	Ξ	
Router#			\mathbf{v}
Ctrl+F6 to exit CLI focus	Сору	Paste	
Птор			

RYSUNEK 9.23. Tablica routingu routera ISP 1

Podsieć nie pasuje do żadnej zadeklarowanej podsieci. Dlatego, jeśli w tablicy routingu nie ma podsieci 140.140.0.0/16, przesyła pakiet na adres tak zwanej "ostatniej szansy", czyli na interfejs FastEthernet 0/1. Tam jest właśnie podłączona chmura Internet, w której istnieje podsieć kolejnego ISP 3, czyli 140.140.10.0/16. Dlatego pakiet tam zostaje przekazany. Router operatora 3 w internecie oczywiście wie, gdzie jest serwer WWW. Jest wpięty do swojego VLAN-u, który go obsługuje. Dlatego przekazuje pakiet do serwera, a ten z powrotem odsyła go w kierunku Smartfon 1 przez ISP 2.

Komunikacja TCP między klientem a serwerem to specyficzna wymiana pakietów. Aby zawiązała się sesja TCP, klient i serwer muszą wykonać 3-etapową wymianę informacji (ang. *three-way handshake*) (rysunek 9.24).

Po wymianie potwierdzeń i pakietów synchronizacyjnych następuje seria żądania http do serwera WWW i wymiana danych. Na serwerze jest strona w html. Serwer przesyła ją klientowi posiadającemu przeglądarkę, która umie przetłumaczyć kod html w sposób czytelny dla użytkownika.

Rysunek 9.24. Komunikacja klient – serwer

Jak widać, strona otworzyła się poprawnie (rysunek 9.25).

💱 Smartfon 2	-	- 🗆 X
Physical Config Desktop Programming Attributes		
Web Browser		х
< > URL http://www.google.pl	Go	Stop
Google	,	
Szukaj w Google Szczęśliwy traf		
<		>
Птор		

Rysunek 9.25. Uruchomiona strona WWW

Następnym krokiem jest przetestowanie poczty. Projekt zakłada scenariusz, w którym mamy konto w domenie *hobbit.com* oraz *google.pl*. Konta zostały założone na serwerach. Pierwsze konto to *pawel@hobbit.com*, drugie to *mateusz@google.pl*.

Aby napisać maila, uruchamiamy smartfon, włączamy przeglądarkę maili i przechodzimy do sprawdzenia konfiguracji konta dla domeny *hobbit.com*. Jak widać, podajemy adresy serwerów poczty przychodzącej i wychodzącej, login, hasło oraz adres e-mail i nazwę wy-świetlaną w mailu. Naciskamy *Save* (rysunek 9.26).

, 2				
onfigure Mail				Х
User Information				
Your Name:	Pawel Zareba			
Email Address	pawel@hobbit.com			
Server Information				
Incoming Mail Server	192.168.0.6			
Outgoing Mail Server	192.168.0.6			
Logon Information				
User Name:	pawel			
Password:	•••••			
Save		Clear	Res	et

RYSUNEK 9.26. Konfiguracja konta pocztowego na smartfonie

Podobna konfiguracja powinna być na tablecie, tylko że dla domeny *google.pl*. Oczywiście, dane użytkownika są inne.

Teraz czas na wysłanie e-maila ze Smartfon 2. Wychodzimy z menu obecnej konfiguracji (przyciskiem "X" w prawym górnym rogu okna) i naciskamy przycisk *Compose*. Piszemy maila z adresu *pawel@hobbit.com* na adres *mateusz@google.pl*, a następnie wysyłamy (rysunek 9.27).

æ s	omartfon 2							-		\times
Ph	iysical Co	onfig	Desk	top	Programming	Attributes				
Co	ompose Mail								Х	^
	Grad	To:		mateu	usz@google.pl					
	Sena	Subje	ect:	Ważn	a wiadomość					
К	ocham Cię									
										~
П	ор									

RYSUNEK 9.27. Przygotowanie maila

Przechodzimy do skrzynki Mateusza, uruchamiamy aplikację Email (rysunek 9.28).

Po uruchomienia klienta poczty naciskamy przycisk *Receive* w celu pobrania wiadomości. Brawo. Mateusz otrzymał e-maila na swojego smatfona. Widać także, że odbiór e-maila z serwera POP3 140.130.10.11 zakończył się sukcesem (rysunek 9.29).

abiet					-	
ysical Cor	nfig Desktop Prog	ramming Attributes				
AIL BROWSER	L					Х
Mails						
[Compose	Reply	Receive	Delete	Configure Mail	
	From		Subject		Received	
1 pawe	From @hobbit.com	Wazna wiadomo	Subject	niedz	Received	
1 pawel	From	Wazna wiadomo	Subject	niedz	Received	>
1 pawel	From	Wazna wiadomo	Subject	niedz	Received	>
1 pawel	From I@hobbit.com osc com re 10 201811:17:18	Wazna wiadomo	Subject	niedz	Received	>
1 pawel	From I@hobbit.com osc com ze 10 201811:17:18	Wazna wiadomo	Subject	niedz	Received	>
1 pawel	From I@hobbit.com osc com ce 10 201811:17:18	Wazna wiadomo	Subject sc	niedz	Received	>
1 pawel	From I@hobbit.com uosc com re 10 201811:17:18	Wazna wiadomo	Subject	niedz	Received	>
1 pawel Vazna wiadom awel@hobbit. ent : niedz. cz ocham Cie	From I@hobbit.com uosc com ce 10 201811:17:18	Wazna wiadomo	Subject	niedz	Received	3

RYSUNEK 9.29. Otrzymanie wiadomości na tablecie

W tym projekcie zapoznaliśmy się z infrastrukturą mobilną oraz działaniem serwera WWW i poczty. Mamy już pogląd, jak działa tego typu infrastruktura, jak współgrają infrastruktura bezprzewodowa i przewodowa. Możesz teraz samodzielnie usprawniać projekt, modyfikować ustawienia. Packet Tracer umożliwia symulację ruchu, a więc jesteśmy w stanie obserwować każdy pakiet czy ramkę od samego początku do końca. Możemy też przyjrzeć się detalom, takim jak konkretne wartości liczbowe poszczególnych nagłówków, oraz obserwować pozostałe parametry. Najlepiej uczymy się przez praktykę, dlatego każdy projekt opisany w tej książce jest krok po kroku wyjaśniony, żeby można było go samodzielnie zbudować i zrozumieć.

Skorowidz

A

adres IPv6, 165 MAC, 128 adresacja IP, 60 akumulator, 247 awaria sieci, 71 switcha, 149

B

brama domyślna, 56 bramka domowa Wi-Fi, 156 konfiguracja czujnika ruchu, 158 konfiguracja sieci LAN, 157 konfiguracja sieci WAN, 157 budowa MPLS, 226

C

CDP, 129 CHAP, Challenge Handshake Authentication Protocol, 52 chmura ISP, 47 CME, 102 czujnik ruchu, 159, 168, 171

D

dekapsulacja, 14 dial-up, 41 dodanie numeru telefonu, 51 domowa brama IP, 241 dostęp do internetu, 41 DSL, 41 działanie klasy, 229 protokołu RADIUS, 236 dzierżawa DHCP, 127

E

ekspres, 257 enkapsulacja, 14 EtherChannel, 85, 133, 143

F

FWD, 137

G

gniazda telefonu IP, 97 GUI telefonu, 96

H

HSRP, 133, 141

inteligentny dom, 239 interfejsy, 26 routera, 162 routera ISP, 59 internet w smartfonie, 179 IoE, Internet of Everything, 153 IoT, Internet of Things, 153, 166, 239

K

kamera, 171 karta konfiguracji DHCP, 126 konfiguracji IP, 15, 20, 54 konfiguracji serwera DNS, 55 logowania poprzez dial-up, 64 serwera Google, 57 z wynikami komputera PC, 63 kod blokowy, 255 komponenty MCU, 155 komputer, 23 komunikacja DHCP, 14 klient - serwer, 194 RADIUS, 225 **UDP/RTP**, 231 konfiguracja czujnika ruchu, 158, 159, 170 DHCP, 25, 79, 126, 164 DNS, 186, 187 graficzna trunka, 87 interfejsu Ethernet, 50 IP, 15, 20, 54 IP serwera poczty, 182 IP sieci 3G/4G, 192 IP szkieletu CO, 188 IP termostatu, 242 IP w smartfonie, 165 IP wieży nadawczej, 189 konta pocztowego, 195 LACP, 87 portu GigabitEthernet, 76 puli DHCP, 208 routera ISP, 30 serwera DHCP, 24 serwera DNS, 55 serwera IoT, 243 serwera RADIUS, 235 trunk, 136 usługi DNS, 166 usługi WWW, 183 ustawień usługi poczty, 182 VLAN-u, 78, 181 WAN bramki domowej, 157 konwerter sygnału elektrycznego, 121

L

LACP, 88, 91 logowanie do serwera IoT, 244 poprzez dial-up, 64

Ł

łącze MPLS, 201 trunk, 35

М

mikrokontroler, 254 moc telefonu IP, 99 model ISO OSI, 11 modele tunelowania, 202 modem DSL, 45 kablowy, 160 V.92, 53 moduł dodatkowego zasilania, 203 modyfikacja topologii sieci, 84 monitoring domu, 153 monitorowane obiekty IoT, 245 MPLS, Multi Protocol Label Switching, 197, 226

Ν

NAT, 69 NetFlow, 223, 232, 233

0

obsługa poczty elektronicznej, 196

Ρ

Packet Tracer, 116 panel komponentów IoT, 154 okablowania, 23 solarny, 247 urządzeń bezprzewodowych, 187 urządzeń dodatkowych, 190 urządzeń końcowych, 23

282

PAP, Password Authentication Protocol, 52 PAT, 69 płytka mikrokontrolera, 254 pobranie adresu, 29 poczta elektroniczna, 179 podgląd urządzeń, 167 podłączenie do MPLS, 197 ISP, 180 serwerów do ISP, 185 telefonu IP, 98 polecenie ipconfig /all, 60 ping, 27 tracert, 150, 214 połączenie dial-up, 47 LACP, 86 PPPoE, 61 telefoniczne, 95 VoIP, 112 wdzwaniane, 64 z hostem, 211 z serwerem IoT, 161 porty w stanie przekazywania, 137, 138 program blokowy, 176 do obsługi IoT, 244 do obsługi poczty, 196 Packet Tracer, 246 projekt inteligentnego domu, 239 sieci mobilnej, 179 protokół HSRP, 139 RADIUS, 236 RIP, 123 przekierowanie portów, 51 przełącznik, 15, 23, 36 awaria, 147, 149 interfejsy, 26 wizualizacja, 98, 135

Q

QoS, 223

R

RADIUS, 223, 225 ramka MPLS, 202 redundancja, 133 reguła, 249, 251 rejestracja telefonów, 109 repeater, 121, 190 RIP, 123 router ISP, 30 serii 2900, 161 rozgałęźnik, 154

S

segmentacja sieci, 21 serwer, 23 DHCP, 24, 28 DNS, 49, 55 Google, 57 RADIUS, 235 rejestracji IoT, 244 syslog, 235 **TFTP**, 237 sieć z VoIP, 95 sprawdzenie łączności, 120 statusu tunelu, 213 sprzęt zwirtualizowany, 22 status EtherChannel, 143 HSRP, 142 interfejsów routera, 62, 185 klas QoS, 230 LACP, 88 PAgP, 90 telefonów IP, 110 tunelu, 213 statystyki kolektora NetFlow, 234 QoS, 232 STP, Spanning Tree Protocol, 139 switch, Patrz przełącznik szafa rakowa, 73, 131

Ś

śledzenie ruchu sieciowego, 147

T

tablica routingu, 123, 144, 193 translacji PAT, 68 telefon analogowy, 46 termostat, 242 testowanie komunikacji, 212 łącza, 220 połączeń, 124 topologia fizyczna, 115 logiczna, 115 sieci biura, 118 translacja PAT, 68 tunelowanie, 202

U

uruchomienie usługi IoT, 166 usługa IoT, 166 ustawienia statyczne IP, 79 usuwanie łączy trunkowych, 146 uszkodzony przełącznik, 147 uwierzytelnianie PPPoE, 47

V

VLAN, 21 komunikacja, 35 podział sieci, 31 VoIP, 45, 95, 115 VPDN, Virtual Private Dial-up Network, 53 VPN, Virtual Private Network, 197

W

warstwa aplikacji, 11 dostępu, 134 fizyczna, 14 łącza danych, 14 prezentacji, 12 sesji, 13 sieci, 13 transportu, 13 weryfikacja działania klasy, 229 połączenia, 66, 107, 209 wirtualizacja przełączników, 150, 151 wirtualne sieci lokalne, VLAN, 21 wizualizacja QoS, 225 serwera CO, 163 switcha, 98, 135 wpisy statyczne, 204 wyświetlanie konfiguracji VLAN-u, 135 adresacji IP, 60 dzierżaw adresów, 104 interfejsów, 105 konfiguracji IP, 209 konfiguracji trunk, 136 konfiguracji VLAN-ów, 184 VLAN-ów, 32

Z

zasilacz telefonu IP, 100 zdalne włączanie ekspresu, 256 zdalny monitoring, 153 zmiana statusu LACP, 93 zmienne środowiskowe, 249 zraszacz, 251

PROGRAM PARTNERSKI ----- GRUPY HELION

1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI 3. ZBIERAJ PROWIZJĘ

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj! http://program-partnerski.helion.pl

PRAKTYCZNE PROJEKTY SIECIOWE

Opanuj sieci — w praktyce!

- Poznaj tajniki połączeń sieciowych
- Skonfiguruj sieć lokalną i dostęp do Internetu
- Zaimplementuj VolP oraz zastosuj technologię VPN
- Kontroluj i monitoruj dom za pośrednictwem sieci

Fale radiowe, światłowody, kable — sieci oplatają świat. Dziś komputer bez połączenia z Internetem stanowi właściwie tylko kosztowny kawałek elektronicznego złomu. To właśnie sieć sprawia, że otaczające nas zewsząd urządzenia cyfrowe zapewniają dostęp do interesujących treści, umożliwiają korzystanie z map, pozwalają monitorować otoczenie, słuchać strumieniowanej muzyki i oglądać filmy — słowem, dają nam wszystkie te możliwości, które kojarzymy z rewolucją informacyjną.

Książka Praktyczne projekty sieciowe bezboleśnie wprowadzi Cię w świat współczesnych technologii sieciowych. Przedstawia najistotniejsze informacje na temat ich możliwości oraz ograniczeń. W niezwykle praktyczny sposób uczy, jak radzić sobie z zadaniami stawianymi przed projektantami i administratorami sieci. Prezentuje szereg konkretnych przykładów i projektów, które z pewnością przydadzą Ci się w pracy. Jeśli szukasz kompendium praktycznej wiedzy na temat sieci, lepiej nie można było trafić.

- Podstawowe informacje o typach sieci i technologiach sieciowych
- Zapewnianie dostępu do Internetu i tworzenie VLAN-ów
- Zestawianie lokalnych i globalnych połączeń VolP
- Projektowanie sieci mobilnych oraz zastosowanie technologii MPLS i VPN
- Wykorzystanie IoT do monitorowania i zarządzania domem
- Praktyczne zastosowanie technologii QoS, NetFlow i RADIUS
- Administracja złożonej sieci Wi-Fi
- Zarządzanie sieciami i rozwiązywanie problemów

Sieci? Z tą książką to nic trudnego!

