Witold Wrotek

BUDUJ ROBOTY Z ARDUINO

Od prostych konstrukcji do zaawansowanych systemów

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz wydawca dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor oraz wydawca nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Redaktor prowadzący: Małgorzata Kulik

Projekt okładki: Studio Gravite/Olsztyn Obarek, Pokoński, Pazdrijowski, Zaprucki

Grafika na okładce została wykorzystana za zgodą AdobeStock.com.

Helion S.A. ul. Kościuszki 1c, 44-100 Gliwice tel. 32 230 98 63 e-mail: *helion@helion.pl* WWW: *helion.pl* (księgarnia internetowa, katalog książek)

Drogi Czytelniku! Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres *helion.pl/user/opinie/buroar* Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

ISBN: 978-83-289-2952-4

Copyright © Helion S.A. 2025

Printed in Poland.

Kup książkę

Poleć książkę

Oceń książkę

Księgarnia internetowa

• Lubię to! » Nasza społeczność

SPIS TREŚCI

	WPROWADZENIE	5
1	ROBOT NA KOŁACH — PODSTAWY	17
2	ROBOT UNIKA PRZESZKÓD	69
3	ROBOT ŚLEDZĄCY LINIĘ	83
4	ROBOT Z MANIPULATOREM	95
5	ROBOT CHODZĄCY — PIERWSZE KROKI	133
6	ROBOT REAGUJĄCY NA ŚWIATŁO	147
7	ROBOT Z KAMERĄ DO ZDALNEGO STEROWANIA	159
8	ROBOT INSPEKCYJNY Z GPS	167
9	ROBOT Z KOMUNIKACJĄ WI-FI	175
	DODATEK A	
	PODZIĘKOWANIA	199

SPIS TREŚCI

Kup ksi k

8

ROBOT INSPEKCYJNY Z GPS

- **Opis projektu:** Robot zdolny do poruszania się w wyznaczonym obszarze z lokalizacją przy użyciu GPS.
- Komponenty:
 - moduł GPS (NEO6MV2),
 - elementy z Rozdziału 1.
- Zastosowanie: Inspekcja dużych obszarów, badanie terenu, ochrona przed kradzieżą.

Krok po kroku

Robot z rozdziału 1 będzie pełnił rolę zdalnie sterowanego wózka, na którym będzie transportowany mały odbiornik GPS (rysunek 8.1).

Rysunek 8.1. Płytka NEO6MV2 z dołączoną anteną

Moduł **NEO6MV2** to mały odbiornik GPS, który służy do **określania dokładnej lokalizacji** (czyli współrzędnych: długości i szerokości geograficznej) na podstawie sygnałów z satelitów GPS.

Inaczej mówiąc, NEO6MV2 mówi mikrokontrolerowi (np. Arduino, Raspberry Pi), gdzie się znajduje na Ziemi.

167 🔳

Co potrafi moduł NEO6MV2?

- Odbiera sygnały z satelitów GPS.
- Oblicza swoją pozycję: długość i szerokość geograficzną, wysokość nad poziomem morza.
- Pokazuje również: czas UTC, prędkość poruszania się, liczbę widocznych satelitów.
- Współpracuje z Arduino i innymi mikrokontrolerami przez port UART (TX/RX).

Aby połączyć ze sobą RX i TX, RX jednego urządzenia należy podłączyć do TX drugiego urządzenia i odwrotnie. To znaczy, że przewód z oznaczeniem RX z jednego urządzenia powinien być podłączony do przewodu z oznaczeniem TX drugiego urządzenia, i na odwrót.

Co to jest RX i TX? RX (ang. *Receiver*) oznacza odbiornik, a TX (ang. *Transmitter*) nadajnik.

Diaczego tak? Komunikacja szeregowa (UART) działa na zasadzie, że jedno urządzenie wysyła dane (TX), a drugie je odbiera (RX).

Zatem jeśli są dwa urządzenia, które mają komunikować się ze sobą, np. moduł GPS i kontroler lotu, RX kontrolera lotu musi być podłączony do TX modułu GPS, a RX modułu GPS do TX kontrolera lotu.

Ważne! Nie łącz RX z RX ani TX z TX, ponieważ wtedy urządzenia nie będą się mogły ze sobą komunikować.

Gdzie się używa NEO6MV2?

- W robotach mobilnych żeby wiedziały, gdzie się znajdują.
- W trackerach GPS np. do śledzenia pojazdów.
- W dronach do nawigacji.
- W projektach z mapami np. żeby narysować trasę.

Co jest potrzebne, żeby go uruchomić?

- Zasilanie (najczęściej 3,3 V lub 5 V zależnie od wersji).
- Podłączenie do mikrokontrolera ($TX \rightarrow RX, RX \rightarrow TX$).

- Odpowiednia biblioteka, np. TinyGPS++ dla Arduino.
- Oprogramowanie do odczytu danych (np. wyświetlanie pozycji na ekranie LCD albo w monitorze portu szeregowego).

Na rysunku 8.2 pokazałem układ NEO6MV2 podłączony do Arduino UNO.

Rysunek 8.2. Połączenie Arduino UNO i NEO6MV2

Wykonane połączenia opisałem w tabeli 8.1.

Arduino UNO	NE06MV2
GND	GND
5V	VCC
ТХ	RX
RX	ТХ

Jak odczytać dane z GPS w komputerze?

Po zmontowaniu układu (rysunek 8.2) trzeba podłączyć Arduino UNO do komputera. Następnie należy uruchomić Arduino IDE i zainstalować bibliotekę. W tym celu trzeba w Arduino IDE wybrać polecenia: *Szkic/Dołącz bibliotekę/Zarządzaj bibliotekami* (rysunek 8.3).

169 🔳

3a Arduino IDE 2.3.5	Zarzadzaj bibliotokami bu Ctrl (Chift I			
Szkic Narzędzia Pomoc				
Weryfikuj/Kompiluj	Ctrl+R	Dodaj bibliotekę .ZIP		
Prześlij	Ctrl+U	Biblioteki Arduino		
Skompiluj i wgraj		ArduinoQTA		
Prześlij używając programatora	Ctrl+Shift+U	BLE		
Eksportuj skompilowane binarnie	Alt+Ctrl+S	BluetoothSerial		
Optymalizuj pod kątem debugowania		DNSServer		
Pokaż folder szkiców.	Alt+Ctrl+K	EEPROM		
Dołącz bibliotekę	>	ESP Insights		

Rysunek 8.3. W ten sposób można się dostać do menedżera bibliotek

Po wyświetleniu okna menedżera bibliotek i wpisaniu w polu filtru nazwy *TinyGPSPlus* wyświetlone zostaną trzy biblioteki (rysunek 8.4).

	MENEDŻER BIBLIOTEK			
	TinyGPSPlus			
1	Typ: Wszystko V			
	TinyGPSPlus przez Mikal Hart TinyGPSPlus provides object-oriented parsing of GPS (NMEA) sentences NMEA is the standard format GPS Więcej informacji 1.0.3 ZAINSTALUJ			
	TinyGPSPlus-ESP32 przez Mikal Hart A GPS library A compact Arduino NMEA (GPS) parsing library Więcej informacji			
	TinyGPSPlusPlus przez Ress TinyGPSPlus provides object-oriented parsing of GPS (NMEA) sentences NMEA is the standard format GPS Więcej informacji			

Rysunek 8.4. Którą bibliotekę wybrać?

170

Odpowiedź na pytanie można uzyskać po przeczytaniu opisu bibliotek. Najistotniejsze informacje zebrałem w tabeli 8.2.

Biblioteka	Do czego służy	Kiedy używać?
TinyGPSPlus przez Mikal Hart	Standardowa wersja do Arduino UNO, Nano, Mega	To jest ta, która jest zgodna z NEO6MV2 i SoftwareSerial
TinyGPSPlus-ESP32	Wersja zoptymalizowana pod ESP32	Nie dla Arduino UNO / Nano
TinyGPSPlus (Ress)	Kopia lub inna modyfikacja	Może być niekompatybilna z kodem

Tabela 8.2. Właściwości bibliotek

Klikam zatem przycisk *Zainstaluj* przy bibliotece *TinyGPSPlus przez Mikal Hart* (1.0.3) (rysunek 8.5).

	MENEDŻER BIBLIOTEK		
	TinyGPS	SPlus	
1	Тур:	Wszystko	~
	Temat:	Wszystko	\checkmark
Mk			
шμ	TinyGP	SPlus przez N	likal Hart 🛛 …
	bject-oriented		
201	NMEA is	the standard fo	ormat GPS
\bigcirc	Więcej informacji		
\sim	1.0.3		TALUJ
	20		

Rysunek 8.5. Biblioteka kompatybilna z NEO6MV2 i SoftwareSerial

Kolejnym krokiem jest wgranie programu do Arduino i IDE:

```
#include <SoftwareSerial.h>
#include <TinyGPSPlus.h>
// Tworzymy port szeregowy dla GPS
SoftwareSerial gpsSerial(4, 3); //RX, TX
TinyGPSPlus gps;
void setup() {
   Serial.begin(9600); // Monitor portu szeregowego
   gpsSerial.begin(9600); // GPS
   Serial.println("Oczekiwanie na dane GPS...");
}
void loop() {
   while (gpsSerial.available() > 0) {
      gps.encode(gpsSerial.read());
}
```

}

```
if (gps.location.isUpdated()) {
    Serial.print("Szerokość geograficzna: ");
    Serial.println(gps.location.lat(), 6);
    Serial.print("Długość geograficzna: ");
    Serial.println(gps.location.lng(), 6);
    Serial.print("Wysokość (m n.p.m.): ");
    Serial.println(gps.altitude.meters());
    Serial.print("Czas UTC: ");
    Serial.print(gps.time.hour());
    Serial.print(":");
    Serial.print(gps.time.minute());
    Serial.print(":");
    Serial.println(gps.time.second());
    Serial.println("-----");
  }
}
```

Po podłączeniu Arduino UNO do komputera (rysunek 8.6) trzeba wybrać odpowiednią płytkę w menedżerze płytek (rysunek 8.7), a następnie wgrać szkic (rysunek 8.8).

Rysunek 8.6. Arduino UNO i NEO6MV2 zostały podłączone do komputera

Rysunek 8.7. Wybieramy płytkę, która jest podłączona do komputera, czyli Arduino UNO

172

Kup ksi k

Rysunek 8.8. Kliknięcie przycisku oznaczonego strzałką spowoduje skompilowanie i wgranie szkicu

🏇 Co zobaczysz w monitorze portu szeregowego:

Po kilku sekundach (choć czasem nawet do 1–2 minut przy pierwszym uruchomieniu) pojawią się dane GPS (rysunek 8.9).

```
Dane wyjściowe Monitor portu szeregowego X
Message(Kliknij aby wysłać wiadomość do 'Arduinc
Oczekiwanie na dane GPS...
Szerokość geograficzna: 52.231540
Długość geograficzna: 21.112934
Wysokość (m n.p.m.): 0.00
Czas UTC: 8:46:57
_____
Szerokość geograficzna: 52.231529
Długość geograficzna: 21.113063
Wysokość (m n.p.m.): 0.00
Czas UTC: 8:46:58
_____
Szerokość geograficzna: 52.231533
Długość geograficzna: 21.113183
Wysokość (m n.p.m.): 0.00
Czas UTC: 8:46:59
_____
```

Rysunek 8.9. Dane odczytane z czujnika GPS

Podsumowanie

Znajdujący się obok kod QR prowadzi do strony o adresie: *https://www.facebook.com/ witold.wrotek/videos/1667935137193705.* Na niej zobaczysz film pokazujący działanie opisanego w tym rozdziale układu.

BUDUJ ROBOTY Z ARDUINO

Kup ksi k

PROGRAM PARTNERSKI ----- GRUPY HELION

1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI 3. ZBIERAJ PROWIZJĘ

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj! http://program-partnerski.helion.pl

BUDUJ Roboty **Z Arduino**

Zbudować robota? To proste!

Jeśli marzysz o samodzielnym zbudowaniu i zaprogramowaniu robota, jesteś na dobrej drodze. Z pomocą tego przewodnika zrobisz wszystko samodzielnie, od początku do końca, szybko i sprawnie – zaskoczy Cię, jak przyjazna może być robotyka.

Nad swoim pierwszym projektem będziesz pracować w systemie Arduino. Pozwala on łączyć rozmaite komponenty elektroniczne, takie jak czujniki, serwomechanizmy i moduły. Steruje się nimi, programując płytki Arduino tak, by realizowały konkretne działania w odpowiedzi na określone sygnały wejścia.

Przed Tobą kompendium wiedzy, które krok po kroku przeprowadzi Cię przez wszystkie etapy prac nad robotem:

- od pierwszych planów i wyboru płytki Arduino
- przez skompletowanie niezbędnych podzespołów
- po umiejętność czytania schematów i zrozumienie podstaw programowania

