Beginning with Web3

An essential guide to building dApps in the new internet era

Ken Huang

www.bpbonline.com

First Edition 2024 Copyright © BPB Publications, India ISBN: 978-93-55517-401

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author's and publisher's knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete BPB Publications Catalogue Scan the QR Code:

www.bpbonline.com

Dedicated to

My beloved wife: **Queenie** and My daughter **Grace** and my son **Jerry**

About the Author

Ken Huang is the author and chief editor of 8 books on Generative Artificial Intelligence and Web3, published respectively by international publishers including Springer, Cambridge University Press, John Wiley, and China Machine Press. He currently serves as the CEO of the AI and Web3 consulting and education company DistributedApps. AI, based in the United States. Additionally, he holds multiple roles including the expert member of the Blockchain Committee of the Chinese Institute of Electronics, the Co-Chair of AI Organization

Responsibility Working Group at Cloud Security Alliance and Chair of the Blockchain Security Working Group at the Cloud Security Alliance, GCR. He is also a core contributor to the Generative AI Working Group at the NIST and a core author of the OWASP Top 10 for LLM Applications.

Ken Huang has been invited to provide speaking and consulting services at institutions including the University of California, Berkeley, Stanford University, Peking University, Tsinghua University, Shanghai Jiao Tong University, China Pacific Insurance, and the World Bank in the past.

Moreover, he has given keynote speeches at international conferences, such as:

- The Davos World Economic Forum 2020 Blockchain Conference
- Consensus 2018 in New York
- The American ACM AI & Blockchain Decentralized Annual Conference 2019
- IEEE Technology and Engineering Management Society Annual Meeting 2019
- Silicon Valley World Digital Currency Forum
- Sino-US Blockchain Summit in Silicon Valley

He has also been awarded the "Blockchain 60" Figure Award by the National University Artificial Intelligence and Big Data Innovation Alliance Blockchain Special Committee in China in 2021.

About the Reviewers

 Mantas Miklaševičius is a developer with professional experience in Web3 and backend development. He has designed, implemented, optimized and tested numerous Smart Contracts, primarily for EVM chains.

His main focus is DeFi, as he believes building inclusive decentralized financial services to be both challenging and rewarding

Mantas is currently a Smart Contract Developer for the LendeXe Finance protocol.

Omolaja Oladunjoye is a dedicated Web3 practitioner with extensive professional experience in the domain of blockchain technology, including blockchain cost optimization, blockchain assessment, blockchain governance, application fitment for blockchain, blockchain operating model, blockchain vendor evaluation, blockchain policy, and blockchain economics. He is a holder of multiple industry certifications in Python, networking, IT support specialist, and blockchain technology.

Oladunjoye specializes in blockchain economics, and enjoys collaborating with clients to maximize their blockchain investments.

Acknowledgement

My heartfelt thanks are extended to my family and friends for their constant support and encouragement throughout the process of writing this book. Special mention goes to my wife, Queenie, and my children, Grace and Jerry, for their understanding and love.

The journey to the completion of this book was significantly enhanced by the guidance and expertise provided by BPB Publications. Their support was crucial in navigating the complexities of publishing. The process involved numerous revisions, benefiting from the collaborative efforts of reviewers, technical experts, and editors, whose contributions have been instrumental in refining this work.

Additionally, I am profoundly grateful for the pioneers of the Web3 community, whose efforts in building a self-sovereign and decentralized internet have paved the way for the subjects discussed in this book. Their pioneering work has laid the foundation for a new digital era based on value.

Lastly, my appreciation extends to all the readers who have shown interest in this book. Your support and encouragement have played a pivotal role in making this project a reality. Thank you for believing in the importance of this work and for your invaluable support.

vii

Preface

Beginning with Web3 is your comprehensive guide to navigating the complex yet captivating world of Web3 and blockchain technology. This book is designed to provide you with a deep understanding of the decentralized web, equipping you with the knowledge and skills necessary to develop **decentralized applications** (**dApps**). From the foundational principles of Web3 and the Ethereum blockchain to the intricacies of security, storage, and development tools, this guide is a gateway to the future of the internet. As you embark on this journey, you will discover the challenges and opportunities of Web3 development, inspiring you to contribute to the growth and innovation of this exciting domain. Let us explore the new era of the internet together and build the future, one dApp at a time.

This book has three distinct sections, each dedicated to a different aspect of Web3 development. This organization helps readers systematically grasp the breadth and depth of Web3, from foundational concepts to the development of decentralized applications and beyond. Below is an overview of each section and its chapters:

Section I: Foundations of Web3 and Blockchain

This section lays the groundwork for understanding Web3 and blockchain technology, providing essential knowledge needed to navigate the decentralized web.

Chapter 1: Introduction to Web3 - This chapter offers a primer on the decentralized internet, outlining the shift from traditional web paradigms to the Web3 philosophy.

Chapter 2: Understanding the Ethereum Blockchain - This chapter focuses on Ethereum, introducing its key components and importance in dApp development.

Chapter 3: Web3 Node Infrastructure - The chapter explains the role and types of nodes in maintaining a decentralized network.

Chapter 4: Wallets and Key Management in Web3 - This chapter covers the critical aspects of securing digital assets through effective wallet and key management techniques.

Section II: Security and Storage in Web3

This section discusses the security challenges and storage solutions in the Web3 ecosystem, emphasizing how to protect dApps and utilize decentralized storage.

Chapter 5: Security in Web3 Development - This chapter highlights the importance of security, detailing common threats and mitigation strategies.

Chapter 6: Introduction to Decentralized Storage - This chapter introduces decentralized storage, explaining its benefits and operational mechanisms.

Section III: How to Develop Web3 Applications

Guides readers through the practical aspects of Web3 application development, from utilizing development tools to creating specific types of dApps.

Chapter 7: Tools for Web3 Development - The chapter provides an overview of essential development tools and their applications in building dApps.

Chapter 8: DeFi and NFT dApp Development - This chapter discusses the development of DeFi and NFT applications, two of the most prominent use cases in Web3.

Chapter 9: Building dApps on Popular Chains and Protocols - This chapter explores dApp development across various blockchain platforms beyond Ethereum.

Chapter 10: ChatGPT and Web3 Development - This chapter looks at the integration of AI, specifically Generative AI application such as ChatGPT, into dApp development, highlighting new possibilities.

Each section of **Beginning with Web3** is carefully designed to progress readers from foundational knowledge to practical application, ensuring a comprehensive understanding of how to build, secure, and innovate within the Web3 space.

Beginning with Web3 simplifies the complexities of Web3 development, providing a clear path from foundational concepts to advanced application building. By the end of this book, you will be well-equipped to contribute to the revolutionary world of Web3. Let us embark on this journey to build the future of the internet, together.

Code Bundle and Coloured Images

Please follow the link to download the *Code Bundle* and the *Coloured Images* of the book:

https://rebrand.ly/2tpx25p

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Beginning-with-Web3

In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at **https://github.com/bpbpublications**. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications' Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline. com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At **www.bpbonline.com**, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at **business@bpbonline.com** with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit **www.bpbonline.com**. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit **www.bpbonline.com**.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

S	Section I: Foundations of Web3 and Blockchain1		
1.	Introduction to Web3	3	
	Introduction	3	
	Structure	3	
	Objectives	4	
	Evolution from Web1 to Web3	4	
	Birth and growth of Web1	4	
	Transition to Web2	5	
	Emergence of Web3	6	
	Fundamental principles of Web3	8	
	Decentralization	8	
	Privacy and user control	. 10	
	Trustless systems	. 11	
	Comparing Web2 and Web3	. 12	
	Understanding Web2	. 13	
	Key features of Web3	. 14	
	Transition from Web2 to Web3	. 15	
	Role of blockchain in Web3	. 16	
	Understanding blockchain	. 17	
	Blockchain as a foundation of Web3	. 18	
	Technical challenges of blockchain technology in Web3	. 19	
	Understanding smart contracts and peer-to-peer networks	. 22	
	Introduction to smart contracts	. 22	
	Peer-to-peer networks and decentralization	. 23	
	Interaction of smart contracts and peer-to-peer networks in Web3	. 24	
	Conclusion	. 25	
	Questions	. 26	
	Keywords	. 27	

2.	. Understanding the Ethereum Blockchain	29
	Introduction	
	Structure	
	Objectives	
	Overview of Ethereum blockchain	
	History of Ethereum	
	Key Ethereum architecture concepts	
	Ethereum nodes	
	Full nodes	
	Light nodes	
	Accounts	
	Transactions	35
	Blocks	
	Gas	
	EIP and EIP-1559 impact on GAS	
	Ether	
	Ether as a means of exchange	
	Ether as incentive and fuel	
	Ether denominations and creation	
	Ether's role in the ecosystem	
	Consensus algorithm	
	Proof-of-work and Ethash	
	The Merge: Transition to proof-of-stake	
	Smart contracts	
	Defining smart contracts	45
	Ethereum and smart contracts	45
	The language of smart contracts: Solidity	45
	Smart contracts use cases	
	The future of smart contracts	
	Ethereum virtual machine	
	The Ethereum ecosystem and EVM's position	
	The architecture of the Ethereum virtual machine	

Ι	Decentralized applications	50
	Tokens	51
	Oracles	52
9	calability of Ethereum blockchain	53
	Layer 2 scaling	53
	Sharding	55
(Governance and development	55
Ι	nteracting with Ethereum network	57
	Prerequisites	57
	Understanding libraries	58
	Ethers.js	58
	Key features of Ethers.js	58
	Web3.js	58
	Distinctions between Ethers.js and Web3.js	59
	Comparisons with examples	59
(Conclusion	60
I	Points to remember	60
(Questions	61
ŀ	Keywords	62
Web	3 Node Infrastructure	63
Ι	ntroduction	63
5	tructure	63
(Dbjectives	64
]	ypes of nodes in a blockchain network	64
	Full nodes	64
	The essential nature of full nodes in blockchain	64
	Full nodes: The guardians of network security and decentralization	65
	Demands of running a full node: Hardware prerequisites	66
	Light nodes	66
	Understanding light nodes in the blockchain ecosystem	67
	Use cases and advantages of light nodes	
	Working of SPV nodes	67

3.

Merkle tree	
Using a Merkle tree in an SPV client	
Inherent limitations of light nodes	
Archive nodes	
Archive nodes and their distinctive features	
Use cases: Debugging and deep blockchain analysis	
Operational challenges and considerations	71
Setting up an Ethereum node with Geth	
Local PoS Node Setup	
Prerequisites	
Get the binaries	
Clone and build Prysm	
Configuration files	
Generate genesis state	
Start execution and consensus clients	
Adding peer nodes	
Summary	74
Interacting with your node	
Introduction to node interaction	
Geth's JavaScript console: The direct gateway	74
Geth's RPC interface: The programmable gateway	75
web3.js: Bridging dApps and nodes	75
Additional tools and extensions	
Understanding node synchronization	
Different synchronization modes	
Essence of blockchain synchronization	76
Full nodes synchronization	76
Archive nodes synchronization	
Light nodes synchronization	
Consensus layer syncing	
Role of synchronization in network consistency	
Network consistency: A cornerstone of blockchain technology	

Synchronization: The path to network consistency	
Full synchronization: Upholding network integrity	
Light synchronization: Consistency for constrained devices	
Network consistency beyond synchronization	
Benefits of network consistency	
Troubleshooting synchronization issues	80
Understanding the nature of synchronization issues	
Network connectivity issues	
Disk space and I/O Issues	
Software bugs or corruptions	
Node configuration issues	
Time sync issues	
General best practices	
Role of nodes in network security	
Transaction validation	
Breaking down a transaction	
Step-by-step transaction validation by nodes	
The collective role of nodes in transaction validation	
Beyond validation: Nodes as gatekeepers	
Consensus enforcement	
The essence of consensus in blockchain	
Nodes: The enforcers of consensus	
Consensus mechanisms and their impact on security	
Consensus enforcement, blockchain immutability and finality	
Network resilience	
Decentralization: The heart of resilience	
Nodes: The pillars of a resilient network	
Case study: The bitcoin network	
Decentralization versus centralization	
Enhancing resilience	
Use RPC nodes for your dApp development	
Understanding RPC nodes	

RPC nodes: The bridge to the blockchain	
Working of RPC nodes	
Why use RPC nodes in dApp development?	
Choosing a reliable RPC service	
Setting up an RPC node	
Why set up your own RPC node?	
Integrating RPC nodes in dApps	
Connecting to the RPC node	
Conclusion	
Questions	
Keywords	
4. Wallets and Key Management in Web3	
Introduction	
Structure	
Objectives	
Understanding cryptographic keys	
Public and private keys	
Generating key pairs	
Mathematical relationship	
Role in securing transactions	
Key takeaways	
Digital signatures	
Generating digital signatures	
Verifying digital signatures	
Importance in blockchain transactions	
Key takeaways	
Role of cryptographic keys in blockchain	
Transaction validation	
Data security	
Smart contracts and dApps	
Address generation	
Establishing trust in a trustless environment	

Key takeaways	
Overview of wallet types in Web3	
Software wallets	
Types of software wallets	
Pros and cons of software wallets	
Safety measures with software wallets	
Hardware wallets	
Advantages of hardware wallets	
Common models in the market	
Using a hardware wallet	
Key takeaways	
Account abstraction: A new era for Ethereum wallets	
The essence of account abstraction	
Account abstraction details	110
Comparison of wallet types	112
Key generation with Ethereal	114
Setting up Ethereal	114
Prerequisites	
Installation process	
Initial configuration	
Generating keys with Ethereal	115
Step 1: Initialize Ethereal	
Step 2: Generate a new key pair	
Step 3: Understanding the implications	
Step 4: Backup and safe storage	
Creating wallets with Ethereal	
Step 1: Initialize Ethereal	
Step 2: Create a new Wallet instance	
Step 3: Access the wallet's address	
Step 4: Sign transactions	
Step 5: Import and export wallets	
Best practices for wallet security	

Using	g encryption	119
L	Inderstanding encryption	119
V	Nhy encryption matters for private keys	119
S	Steps to encrypt your private key	119
L	Decryption	
Backi	ing up your wallet	121
I	mportance of regular backups	
H	How to back up your wallet	
Secur	re usage habits	
K	Regular software updates	
l	Ise of secure networks	
λ	Multi-factor authentication	
Е	Beware of phishing attempts	
l	Ise trusted third-party services	
F	Regularly monitor your wallet	123
L	imit exposure with cold and hot wallets	124
E	Educate yourself	124
Key man	nagement and recovery	
Deali	ing with key loss	124
Т	The gravity of losing a private key	124
V	Nhy traditional recovery does not apply	125
S	Steps to take after key loss	125
Key r	recovery methods	127
λ	Mnemonic seed phrases	
K	Keystore files	
P	Physical paper wallets	
H	Hardware wallet recovery	
Impo	rtance of seed phrases	
S	Seed phrase	
V	Norking of a seed phrase	
Seed	phrase, private key and address	
F	Relationship and security implications	

Example	130
Storing seed phrases securely	131
Conclusion	
Questions	
Keywords	
Section II: Security and Storage in Web3	
5. Security in Web3 Development	
Introduction	
Structure	
Objectives	
Common vulnerabilities in Web3	
Top smart contract vulnerability	
Reentrancy attacks	
Oracle manipulation	141
Gas griefing	143
Transaction order dependence attacks	144
Force feeding attacks	145
Timestamp dependence	146
Denial of service	147
Information and function exposure	
Bridge attacks	
Security of consensus model in blockchain	151
Incorrect input validation in cross chain protocol	151
Lack of cross contract access control in blockchain bridges	151
Rug pull	152
Miner extractable value	153
Uncle bandit attacks	153
Time Bandit attacks	154
Mitigating security risks in Web3 development	
Best coding practices	
Latest Solidity versions	155

Proper error handling	
Conservative estimates for gas limits	
Code audits and testing	
Use of modular contracts	
Why modular contracts?	157
Implementing modular contracts	157
Security considerations	157
Regular code reviews	
Importance of regular code reviews	
Effective code review practices	
Automated contract security analysis with MythX and Slither	
Introduction to MythX	
MythX: An overview	
Integrating MythX into the development process	
Benefits of using MythX	
Introduction to Slither	
Using Slither: A tutorial	161
Advantages of static analysis with Slither	
Other smart contract security auditing tools	
Oyente	
Securify	
SmartCheck	
Echidna	
Manticore	
Importance of auditing and testing in Web3	
Testing smart contracts	
Security auditing	
Role of testnets	
Security considerations in decentralized storage	
Overview of decentralized storage platforms	
Data encryption and privacy	
Access control in decentralized storage	

	Conclusion	
	Questions	
	Keywords	
<i>c</i>	Is the dustion to Descentrational Otenses	100
6.	Introduction to Decentralized Storage Introduction	
	Structure	
	Objectives	
	Introduction to IPFS	
	Principles of IPFS	
	Decentralization	
	Content addressing	
	Peer-to-peer networking	
	The confluence of principles	
	IPFS architecture	
	Objects	
	Files	
	Naming	
	Routing	
	Unifying the components	
	Content-addressed data storage	
	Understanding content-addressed storage	
	Benefits of content addressing	
	Content addressing and IPFS	
	Setting up and interacting with IPFS	
	Installing an IPFS node	
	Prerequisites	
	Downloading and installing IPFS	
	Initializing the IPFS node	
	Starting the IPFS node	
	Adding files to the network	
	Preparing your data	
	Adding the file to IPFS	

Broadcasting the file to the network	
Retrieving data with content identifiers	
Understanding content identifiers	
Retrieving a file	
Storing and retrieving data in a decentralized way	
Protocols for data distribution	
Role of peers	
BitSwap protocol	
Distributed hash table	
Ensuring efficient data distribution	
Role of content identifiers in retrieval	
Content identifiers and content-addressed storage	
Data retrieval with content identifiers	
Advantages of content identifiers in retrieval	
Achieving redundancy in a decentralized network	
Importance of redundancy	
Data replication in IPFS	
Pinning for persistent storage	
Achieving redundancy through replication and pinning	
Understanding Filecoin	
Introduction to the Filecoin protocol	
Storage miners	
Deals	
Proofs of storage	
Incentivizing decentralized storage	
Role of FIL tokens	
Economics of decentralized storage	
Balancing supply and demand	
Relationship between Filecoin and IPFS	
Complementary roles	
IPFS and Filecoin integration	
Joint contribution to the decentralized web	

Ensuring data availability and privacy	
Data replication techniques	
Understanding data replication	
Replication in IPFS	
Replication in Filecoin	
Redundancy and data availability	
Data privacy and encryption	
Need for data privacy	
Role of encryption	
Client-side encryption	
Encryption and decentralized storage	
Verifying data integrity and availability	
Ensuring data integrity with cryptographic hashes	
Proofs of replication and retrieval	
Verifying data integrity and availability	
Storing files in Filecoin local node	
Arweave	
Core concepts of Arweave	
Integration in Web3 development	
Implementing Arweave in a sample dApp	
Conclusion	
Questions	
Keywords	
Section III: How to Develop Web3 Applications	
7. Tools for Web3 Development	
Introduction	
Structure	
Objectives	
Understanding the role of Truffle and Hardhat	
Introduction to Truffle	
Installation of Truffle	

Core functionalities of Truffle	
Role of Truffle in smart contract development	
Unveiling Hardhat	
Unique features of Hardhat	
Installation and usage of Hardhat	
Role of Hardhat in Ethereum development	
Other Web3 development platforms	
Compiling and deploying smart contracts	
Writing smart contracts	211
Writing smart contracts	211
Compiling smart contracts	211
Deploying smart contracts	
Using Ganache for local blockchain development	
Setting up Ganache	213
Installation	
Creating a workspace	
Understanding the interface	214
Simulating transactions with Ganache	
Executing transactions	
Interpreting transaction details	
Using Ganache with Truffle and Hardhat	
Configuring Truffle with Ganache	
Configuring Hardhat with Ganache	
Setting up and using Infura	
Infura and its uses	
Setting up Infura	
Integrating Infura with dApps	219
Prerequisites	
Integrating Infura with Web3.js	
Integrating Infura with ethers.js	
Best practices for Web3 development	
Smart contract security	221

Efficient gas usage	
Simplifying code logic	
Optimizing data storage	
Using appropriate function visibility	
Building user friendly dApps	
Clear and intuitive interface	
Graceful handling of transactions and errors	
Making dApps accessible to non-technical users	
Use Chainlink to get randomness for your dApps	
Prerequisites of using Chainlink VRF	
Understanding Chainlink VRF	
Working of Chainlink VRF	
Methods of requesting randomness	
Creating a custom lottery contract with Chainlink VRF	
Use Ethereum Name Service	
Using ENS in Truffle	
Conclusion	
Questions	
Keywords	
8. DeFi and NFT dApp Development	
Introduction	
Structure	
Objectives	
Understanding DeFi and key protocols	
Basics of DeFi	
Principles of DeFi	
Value proposition of DeFi	
Risks of DeFi	
Democratizing access to financial services	
Sample DeFi protocols: Aave and Uniswap	
Aave	
Uniswap	

Liquidity pools and yield farming	
Liquidity pools	
Yield farming	
Developing a DeFi dApp	
Defining the smart contract	
Deploy smart contract	
Test smart contract	
Mocha	
Chai	
UI or front end	
React for web applications	
React Native for mobile applications	
Common features in DeFi UI	
Development approach	
Introduction to Non Fungible Tokens	
Basics of NFTs	
Unique properties of NFTs	
Why does uniqueness matter	
History of NFTs	
Emergence of NFT as a pervasive topic of interest	
Impact of NFTs	
Creating your own NFT with ERC 721 and ERC 1155	
Understanding ERC 721	
Famous use cases of ERC 721	
Exploring ERC 1155	
Famous use cases of ERC 1155	
Creating your own NFT	
Practical applications of DeFi and NFTs	
DeFi in the real world	
Lending and borrowing	
Stablecoins	
Decentralized exchanges	

Yield farming and liquidity mining	
Insurance	
Asset management	
NFTs beyond digital art	
Gaming	
Real estate	
Intellectual property	
Collectibles and memorabilia	
Domain names	
Future trends in DeFi and NFTs	
Real-world asset tokenization	
Interoperability	
Regulation	
Layer 2 solutions and scalability	
Fractional ownership	
NFTs in virtual reality	
Conclusion	
Questions	
Keywords	
References	
9. Building dApps on Popular Chains and Protocols	273
Introduction	
Structure	
Objectives	
Understanding Ethereum alternatives	
Polkadot	
Polkadot's architecture	
Relay Chain	
Parachains	
Bridges	
High scalability Interoperability	
1111er0peruo1119	

Binance Smart Chain	
BNB Chain's architecture	
Interacting with BNB Chain	
Ethereum alternatives comparison	
Solana	
Polygon	
Polkadot	
NEAR	
Cosmos	
Algorand	
Aptos	
Sui	
Deploying smart contracts on different chains	
Developing for Polkadot	
Understanding Polkadot and Substrate	
Working with Polkadot	
Writing a Substrate contract	
Compiling and deploying the contract	
Interacting with the contract	
Understanding Gas in Polkadot	
Developing for BNB Chain	
Setting up the development environment	
Writing a smart contract	
Compiling and deploying the contract	
Interacting with the contract	
Exploring Layer 2 solutions	
Optimistic rollups: Scalability and affordability	
Understanding optimistic rollups	
Achieving scalability and affordability	
Deploying and interacting with dApps on optimistic rollups	
ZK Rollups: Enhanced privacy and performance	
Understanding ZK Rollups	

Ensuring privacy and transaction speed	6
Deploying and interacting with dApps on ZK Rollups	6
Understanding multi-chain deployment	8
Case for multi-chain deployment	8
Access to different user bases	8
Avoidance of single platform dependency	8
Enhanced resilience and security	9
Capitalizing on unique features	9
Challenges in multi-chain deployment	9
Cross-chain communication	9
Inconsistency in smart contract languages and standards	0
Multiple wallets and user experience	0
Varying gas fees and transaction times	0
Governance and regulatory challenges	1
Strategies for multi-chain deployment	1
Choosing the right chains	1
User interface and experience considerations	1
Managing updates across chains	2
Governance and community engagement	2
Importance of blockchain interoperability	2
Blockchain interoperability	2
Need for interoperability	2
Working of blockchain interoperability	3
Mechanisms enabling interoperability	3
Benefits of interoperability	4
Wider adoption of blockchain technology	4
Efficient cross-chain transactions	4
Diverse and resilient dApp ecosystems304	4
Facilitating innovation and collaboration	5
Enhancing liquidity and market efficiency	5
Future of interoperability	5
Conclusion	6

Questions	
Keywords	
natGPT and Web3 Development	
Introduction	
Structure	
Objectives	
Introduction to OpenAI's ChatGPT	
Understanding ChatGPT	
ChatGPT API	
ChatGPT safety measures	
Potential use cases of ChatGPT in Web3	
ChatGPT and NFTs	
ChatGPT in decentralized finance	
User experience enhancement	
Integrating ChatGPT into a Web3 dApp	
Setting up ChatGPT API	
Integrating ChatGPT into dApp	
Customizing the API request to ChatGPT	
Benefits of AI and blockchain integration	
Enhanced security	
Optimized decision-making	
Improved scalability	
Future directions: AI in the decentralized web	
Ongoing developments	
Challenges and opportunities	
Future of AI in Web3	
Conclusion	
Questions	
Keywords	224

Section - I Foundations of Web3 and Blockchain

This section lays the groundwork for understanding Web3 and blockchain technology, providing essential knowledge needed to navigate the decentralized web.

CHAPTER 1 Introduction to Web3

Introduction

This chapter provides a comprehensive introduction to Web3, the next evolution of the internet. We will trace the progression from the early read-only internet (Web1) to the social, participatory platforms of Web2, and finally to the emerging decentralized and user-controlled vision of Web3.

The fundamental principles and technologies driving this paradigm shift are explored in the chapter, including decentralization, blockchain, smart contracts, and peer-to-peer networks. We will compare the Web2 and Web3 models, analyzing how Web3 addresses the centralization of power and lack of user control that characterize today's internet landscape.

While Web3 promises a more open, decentralized, and user-centric web, we will also critically examine the challenges and tradeoffs involved in this transition. As we stand at the cusp of this new internet era, this chapter aims to provide a solid foundation for understanding the possibilities and complexities of Web3.

Structure

The chapter will cover the following topics:

• Evolution from Web1 to Web3

- Fundamental principles of Web3
- Comparing Web2 and Web3
- Role of blockchain in Web3
- Understanding smart contracts and peer-to-peer networks

Objectives

By the end of this chapter, readers will be able to comprehend the evolution of the internet from its origins as Web1 to the social, participatory platforms of Web2, and now the emerging paradigm of Web3. They will be able to understand the fundamental principles underpinning Web3 including decentralization, user control, privacy, and trustless systems.

Readers will be able to recognize core Web3 technologies like blockchain, smart contracts, and peer-to-peer networks and how they enable a decentralized web. They will be able to appreciate how Web3 differs from Web2, particularly regarding centralization of power and user control over data. Readers will gain insight into the role of blockchain as the foundational infrastructure for Web3 and the associated technical challenges. They will also understand how technologies like smart contracts and peer-to-peer networks interact to enable decentralized applications.

After going through this chapter, the reader will be able to identify key opportunities and challenges involved in the transition from Web2 to Web3, and be equipped with the foundational knowledge to explore the technologies and implications of Web3 further.

Evolution from Web1 to Web3

This section traces the development of the Internet from its early stages as Web1, through the interactive platform of Web2, and finally to the decentralized and democratized vision of Web3.

Birth and growth of Web1

This subsection delves into the initial days of Web1, examining its design, functionality, and limitations.

The advent of the **World Wide Web**, or what we now refer to as Web1, was a revolutionary moment in the history of technology and communication. First proposed by *Tim Berners-Lee* in 1989 at CERN, the European research organization, Web1 began as a project to facilitate information sharing among scientists in universities and institutes worldwide.

The initial design of Web1 was quite rudimentary, with web pages consisting of simple text and hyperlinks. These pages were static, meaning they were pre-built and did not

change in response to user interaction. Users could read and navigate the information, but they could not contribute or change the content. Web1 was largely a read-only platform, a digital library where people could find information but had minimal ways to interact with it.

The primary language used to create these web pages was the **Hyper Text Markup Language** (**HTML**). HTML allowed web developers to structure text, insert hyperlinks, and later, add images. Despite its simplicity, HTML was a powerful tool for presenting information on the web. It provided the basic structure for web pages and set the foundation for more complex web development tools and languages to come.

The functionality of Web1 was primarily centered around information retrieval. Search engines like AltaVista, Yahoo!, and later Google, were developed to help users find relevant information amidst the rapidly growing volume of web content. The function of these search engines was to crawl the web, indexing pages to make them searchable by keyword. This marked a significant step in making the internet more accessible and useful to the average user.

However, Web1 had its limitations. The lack of interactivity was a major drawback. While users could read and navigate between pages, they could not contribute their own content or interact with other users. Web1 was largely a one-way street, with information flowing from webmasters to users, but not the other way around.

Web1 also lacked the sophisticated design capabilities that we take for granted today. Early web pages were primarily text-based, with few images and virtually no multimedia content. The layout and design options were limited, creating a plain and homogeneous browsing experience. As a result, Web1 was not particularly engaging or immersive, especially compared to what was to come with Web2.

Security was another concern with Web1. As the internet began to grow, so did the risks associated with data privacy and security. However, the security protocols and infrastructure necessary to protect user data were only partially developed during the Web1 era. This led to various security challenges, some of which persist to this day.

Despite these limitations, the birth and growth of Web1 represented a monumental shift in the way information was shared and accessed. It democratized access to information, enabling anyone with an internet connection to access a wealth of knowledge from anywhere in the world. Web1 set the stage for the more interactive, user-centered versions of the web that were to come. As we move further into the era of Web3, it is important to remember and understand the roots of the internet in Web1, as it laid the groundwork for all subsequent developments.

Transition to Web2

The transition from Web1 to Web2 marked a profound shift in the way people interacted with the internet. Where Web1 was a largely static, read-only platform, Web2 evolved into

a dynamic, participatory medium. This transition was not abrupt but rather a gradual shift fueled by advances in technology and changing user expectations.

The dawn of Web2 brought with it the concept of the **participatory web**. Users were no longer mere consumers of information, but they also became creators and contributors. This was made possible by the advent of platforms that allowed user-generated content. Social media platforms like Facebook, Twitter, and Instagram, blogging sites like Blogger and WordPress, and video-sharing platforms like YouTube transformed the internet into a space of active participation.

The rise of social media was a defining aspect of the Web2 era. These platforms provided users with tools to connect, share, and engage with each other in ways previously unimaginable. They gave voice to individuals, allowing them to share their thoughts, experiences, and ideas with a global audience. At the same time, they also created new channels for information flow, altering traditional media landscapes and giving rise to phenomena like viral content and influencer culture.

The emphasis on user participation also had a significant impact on businesses. Traditional business models had to adapt to the new digital landscape. Companies began to recognize the importance of online presence and started to leverage social media platforms for marketing, customer engagement, and brand building. The power of online reviews and ratings became evident as they significantly influenced purchasing decisions.

Web2 also ushered in the era of **web applications**. These were interactive programs that ran within the browser, providing richer and more engaging user experiences. Examples include Gmail, Google Maps, and Facebook. These applications utilized technologies like **Asynchronous JavaScript and XML (AJAX)**, which allowed web pages to update and display new data without the need for a full-page refresh, making the user experience much more dynamic and interactive.

However, this new era had its own challenges. The explosion of user-generated content led to concerns about data privacy and security. As users began sharing more personal information online, the risk of data breaches and misuse of information increased. The shift towards free, ad-supported services also raised questions about data ownership and surveillance.

In conclusion, the transition to Web2 marked a significant evolution in the Internet's history. It moved us from a static, one-way information highway to a dynamic, two-way interaction platform. It democratized content creation, empowered users, and transformed business models. As we look towards the future of the internet in Web3, understanding the journey and impact of Web2 is crucial.

Emergence of Web3

As the internet continues to evolve, we are now witnessing the emergence of Web3. This new iteration of the web represents a significant shift from the interactive, user focused

Web2 to a decentralized and autonomous system. Web3 is envisioned as a truly open and permissionless network, one that extends the user-centricity of Web2 while addressing its limitations.

The primary driver behind the shift to Web3 is the desire for greater decentralization. Web2, for all its advances, still relies heavily on large, centralized entities that control platforms, data, and services. This centralization has raised concerns about data privacy, ownership, and monopolistic control. Web3 aims to address these issues by moving away from centralized control and towards a decentralized network where no single entity has absolute power.

Web3 also seeks to enhance privacy and give users more control over their data. The Web2 model relies heavily on the collection and monetization of user data, often without explicit consent or compensation for users. Web3 proposes a new model where users maintain control of their own data, deciding who can access it and how it can be used. This change aims to restore data ownership to individuals and reduce the power of large corporations.

Another key feature of Web3 is the concept of a trustless system. In a Web3 world, trust is built into the system itself through cryptographic guarantees rather than being dependent on intermediaries. This allows for peer-to-peer interactions and transactions without the need for a trusted third party, reducing the potential for fraud and enhancing security.

Web3 also brings with it the potential for more economic inclusivity. By utilizing blockchain technology and cryptocurrencies, Web3 can facilitate peer-to-peer transactions without the need for traditional financial institutions. This could potentially provide financial services to those who are currently unbanked or underbanked, democratizing access to financial resources.

The rise of Web3 technologies, such as blockchain, smart contracts, and **decentralized applications** (**dApps**), are critical to this transformation. Blockchain provides decentralized infrastructure, smart contracts enable autonomous transactions, and dApps provide user interfaces that tie everything together.

However, the transition to Web3 is not without its challenges. Technical complexity, scalability issues, regulatory uncertainty, and public understanding are all hurdles that need to be overcome. Furthermore, while the promise of decentralization is appealing, it also raises new questions about governance, accountability, and security that are yet to be fully addressed.

The shift from Web2 to Web3 is driven by the pursuit of greater decentralization, enhanced user privacy, and increased control over data. In Web3, the concept of a trustless system comes to the fore, with cryptographic guarantees replacing the need for intermediaries. The economic inclusivity that Web3 can potentially offer, facilitated by blockchain technology and cryptocurrencies, also represents a significant step forward.

Yet, the transition to Web3 is not straightforward and is fraught with challenges. Technical complexities, scalability issues, regulatory uncertainties, and a general lack of