Wydanie II

Arduino[®] nst byte PS_16 🚘 (1 << ADPS2 dla początkuj float Kolejny krok

Tytuł oryginału: Programming Arduino Next Steps: Going Further with Sketches, Second Edition

Tłumaczenie: Anna Mizerska z wykorzystaniem fragmentów Arduino dla początkujących. Kolejny krok w przekładzie Konrada Matuka

ISBN: 978-83-283-7548-2

Original edition copyright © 2019, 2014 by McGraw-Hill Education. All rights reserved.

Polish edition copyright © 2021 by Helion SA. All rights reserved.

McGraw-Hill Education, the McGraw-Hill Education logo, TAB, and related trade dress are trademarks or registered trademarks of McGraw-Hill Education and/or its affiliates in the United States and other countries and may not be used without written permission.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without permission from the Publisher.

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz Helion SA dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor oraz Helion SA nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Helion SA ul. Kościuszki 1c, 44-100 Gliwice tel. 32 231 22 19, 32 230 98 63 e-mail: *helion@helion.pl* WWW: *http://helion.pl* (księgarnia internetowa, katalog książek)

Drogi Czytelniku! Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres *http://helion.pl/user/opinie/arpok2* Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

Printed in Poland.

- Kup książkę
- Poleć książkę
- Oceń książkę

- Księgarnia internetowa
- Lubię to! » Nasza społeczność

Spis treści

O autorze	9
Podziękowania	
Przedmowa	
Wstęp	
Rozdział 1. Programowanie Arduino	
Czym jest Arduino	
Instalacja i środowisko programistyczne	
Instalacja środowiska programistycznego	
Blink	
Wycieczka po płytce Arduino	
Zasilanie	
Złącza zasilania	
Wejścia analogowe	
Złącza cyfrowe	
Płytki Arduino	
Uno i pochodne	
Duże płytki Arduino	
Małe płytki Arduino	
Nieoficjalne płytki Arduino	
Język programowania	
Modyfikacja szkicu Blink	
Zmienne	
If	
Pętle	
Funkcje	
Wejścia cyfrowe	
Wyjścia cyfrowe	
Monitor portu szeregowego	
Tablice i macierze	
Wejścia analogowe	

Wyjścia analogowe	42
Korzystanie z bibliotek	44
Typy danych obsługiwane przez Arduino	46
Polecenia Arduino	47
Podsumowanie	49
Rozdział 2. Pod maską	51
Krótka historia Arduino	51
Anatomia Arduino	52
Procesory AVR	52
ATmega328	53
ATmega32u4	53
ATmega2560	55
AT91SAM3X8E	55
Arduino i Wiring	55
Od szkicu do Arduino	59
AVR Studio	61
Instalacja programu rozruchowego	62
Instalacja programu rozruchowego za pomocą aplikacji AVR Studio i programatora	63
Instalacja programu rozruchowego za pomocą zintegrowanego środowiska	
programistycznego Arduino i drugiej płytki Arduino	64
Podsumowanie	66
Rozdział 3. Kiedy Arduino to nie Arduino?	67
Rozszerzalna architektura Arduino IDE	67
Adafruit Circuit Playground Express	68
NodeMCU	71
ESP32	73
Mikrokontrolery ATtiny	73
ATtiny44	73
Arduino jako programator	74
Instalacja ATtinyCore w IDE	75
Zegary, kryształy i bezpieczniki	76
Minimalne Arduino	77
Podsumowanie	77
Rozdział 4. Przerwania i zegary	79
Przerwania sprzętowe	79
Piny przerwań	82
Tryby przerwań	83
Aktywacja wbudowanego rezystora podciągającego	83
Procedury obsługi przerwań	84
Zmienne ulotne	84
Podsumowanie wiadomości na temat procedur obsługi przerwań	8.5
Włączanie i wyłączanie obsługi przerwań	85
Zegary i przerwania	
Podsumowanie	

Rozdział 5. Przyspieszanie Arduino	
Jak szybko działa Twoje Arduino?	
Porównanie płytek Arduino	
Przyspieszanie wykonywania operacji arytmetycznych	
Czy naprawdę musisz stosować wartości typu float?	
Przeglądanie kontra obliczanie	
Szybkie wejścia-wyjścia	
Podstawowa optymalizacja kodu	
Bajty i bity	
Porty układu ATmega328	
Bardzo szybkie działanie wyjść cyfrowych	100
Szybkie wejścia cyfrowe	100
Przyspieszanie wejść analogowych	
Podsumowanie	
Rozdział 6. Arduino i mały pobór pradu	105
Potki Arduino i pobór pradu	105
Prad i akumulatory	107
Zmniejszenie częstotliwości taktowania	108
Wyłączanie komponentów	100
Usvnjanje Ardujno opartych na ATmega	111
Biblioteka Narcolentic	111
Budzenie za pomoca zewnetrznych przerwań	
Usvpianie ESP8266	115
Usyptanie ESP32	
Ograniczanie pobieranego pradu za pomoca wyiść cyfrowych	
Podsumowanie	
Rozdział 7 Pamieć	121
Pamieć Arduino	121
Korzystanie z minimalnej ilości namieci RAM	121
Korzystanie z właściwych struktur danych	123
Przechowywanie w pamieci flash stałych bedacych łańcuchami	124
Rozpowszechnione błedne przekonania	124
Pomiar wolnej pamieci	
Korzystanie z minimalnei ilości pamieci flash	
Korzystaj ze stałych	
Usuwaj zbędne elementy szkicu	
Pomiń program rozruchowy	
Statyczna i dynamiczna alokacja pamięci	
Łańcuchy	
Tablice elementów typu char	
Biblioteka Arduino StringObject	130
Korzystanie z pamięci EEPROM	
Przykład korzystania z pamięci EEPROM	132
Korzystanie z biblioteki avr/eeprom.h	
Ograniczenia pamięci EEPROM	

Korzystanie z pamięci Flash	
Zapisywanie danych na kartach SD	
Podsumowanie	139
Rozdział 8. Interfejsy Arduino	141
System binarny	141
Typy danych Arduino i system binarny	142
System szesnastkowy	143
Maskowanie bitów	144
Przesunięcie bitowe	145
Dane przesyłane szeregowo	146
Podsumowanie	150
Rozdział 9. Korzystanie z magistrali I2C	151
Warstwa sprzetowa	153
Protokół magistrali I2C	
Biblioteka Wire	155
Iniciacia magistrali I2C	155
Wysyłanie danych przez urządzenie nadrzedne	155
Odhieranie danych przez urządzenie nadrzędne	155
Przykład działania magistrali I2C	156
Radio FM TEA 5767	156
Przesyłanie danych pomiedzy dwoma płytkami Arduino	158
Płytki z diodami LED	
Zegar czasu rzeczywistego DS1307	162
Podsumowanie	
	1.65
Rozdział 10. Praca z urządzeniami wyposażonymi w interfejs 1-Wire	
Sprzęt obsługujący interfejs 1-Wire	166
Protokół 1-Wire	166
Biblioteka OneWire	
Inicjalizowanie biblioteki One Wire	
Skanowanie magistrali	
Korzystanie z układu DS18B20	
Podsumowanie	171
Rozdział 11. Praca z urządzeniami wyposażonymi w interfejs SPI	
Operowanie bitami	
Sprzęt obsługujący magistralę SPI	174
Protokół SPI	175
Biblioteka SPI	
Przykład komunikacji za pomocą interfejsu SPI	
Podsumowanie	

Rozdział 12. Szeregowa transmisja danych za pośrednictwem układu UART	183
Sprzęt służący do szeregowej transmisji danych	
Protokół obsługujący szeregową transmisję danych	
Polecenia służące do obsługi szeregowej transmisji danych	
Biblioteka SoftwareSerial	189
Przykłady szeregowej transmisji danych	190
Komunikacja pomiędzy komputerem a Arduino za pośrednictwem interfejsu USB	
Komunikacja pomiędzy dwoma płytkami Arduino	
Moduł GPS	194
Podsumowanie	
Rozdział 13. Obsługa interfejsu USB	199
Emulacja klawiatury i myszy	199
Emulacja klawiatury	200
Przykład emulacji klawiatury	201
Emulacja myszy	201
Przykład emulacji myszy	202
Host USB płytki Arduino Due	202
Podsumowanie	
Rozdział 14. Obsługa sieci oraz internet rzeczy	207
Sprzet sieciowy	
Płytka rozszerzeń wyposażona w kontroler sieci Ethernet	207
Arduino Ethernet i Arduino EtherTen	208
Biblioteka Ethernet	209
Nawiązywanie połączenia	209
Stawianie serwera sieci Web	211
Tworzenie żądań	211
Przykład szkicu korzystającego z biblioteki Ethernet	
Sprzętowy serwer sieci Web	212
Pobieranie danych w formacie JSON	216
Oficjalna biblioteka Arduino do obsługi WiFi	
Nawiązywanie połączenia	219
Funkcje zdefiniowane w bibliotece WiFi	220
Przykładowy szkic korzystający z sieci Wi-Fi	
Przykład ESP8266/ESP32 WiFi	
Internet rzeczy	
dweet.io	224
Programowanie NodeMCU lub Wemos D1 Mini	225
Podłączanie TMP36	226
Strona internetowa wyświetlająca temperaturę	226
Podsumowanie	

Wprowadzenie do cyfrowego przetwarzania sygnałów229Uśrednianie odczytów230W stęp do filtrowania232Prosty filtr dolnoprzepustowy233Cyfrowe przetwarzanie sygnałów przez Arduino Uno234Cyfrowe przetwarzanie sygnałów przez Arduino Due235Generowanic kodu filtrującego238Transformacja Fouriera241Analizator spektrum244Podsumowanie244Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Dlaczego wątki są zbędne248Punkcje setup i loop248Najperw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik nagłówkowy259Utwórz plik nagłówkowy258Utwórz plik ze słowami kluczowymi259Utwórz plik nagłówkowy266Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261Dodatek A. Podzespoły265Piysti Arduino265Dystrybutorzy266<	Rozdział 15. Cyfrowe przetwarzanie sygnałów	
Ušrednianie odczytów230Wstęp do filtrowania232Prosty filtr dolnoprzepustowy233Cyfrowe przetwarzanie sygnalów przez Arduino Uno234Cyfrowe przetwarzanie sygnalów przez Arduino Due235Generowanie kodu filtrującego238Transformacja Fouriera241Analizator spektrum241Poniar częstoliwości244Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Zlmiana skali247Placzego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik ingłomkowy258Utwórz plik ingłomkowy259Utwórz plik ingłomkowy259Utwórz plik ingłomkowy265Podsumowanie261Odatek A. Podzespoły265Pytki Arduino265Nerzenie repozytorium262Podsumowanie265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystryb	Wprowadzenie do cyfrowego przetwarzania sygnałów	
Wstęp do filtrowania232Prosty filtr dolnoprzepustowy233Cyfrowe przetwarzanie sygnałów przez Arduino Uno234Cyfrowe przetwarzanie sygnałów przez Arduino Due235Generowanie kodu filtrującego238Transformacja Fouriera241Analizator spektrum241Pomiar częstotliwości244Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Dlaczego wątki są zbędne248Rozdział 16. Praca z użyciem tylko jednego procesu247Datarzego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Podsumowanie251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie biblioteki?255Stosowanie klas metod256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik nagłówkowy258Utwórz plik nagłówkowy258Utwórz plik nagłówkowy266Połsunaie biblioteki260Publikacja biblioteki na GitHubie261Odatek A. Podzespoły265Pytki Arduino265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy <td>Uśrednianie odczytów</td> <td></td>	Uśrednianie odczytów	
Prosty filtr dolnoprzepustowy233Cyfrowe przetwarzanie sygnałów przez Arduino Uno234Cyfrowe przetwarzanie sygnałów przez Arduino Due235Generowanie kodu filtrującego238Transformacja Fouriera241Analizator spektrum241Podsumowanie244Podsumowanie244Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Dlaczego wątki są zbędne248Funkcje setu pi loop248Najpierw wykrywaj, a dopiero pźniej reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik nagłówkowy259Utwórz plik z słowani kluczowymi259Utwórz plik z słowani kluczowymi260Podsumowanie261Ordatek A. Podzespoły265Podsumowanie264Dodatek A. Podzespoły265Pytki Arduino265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Podsumowanie <td>Wstęp do filtrowania</td> <td></td>	Wstęp do filtrowania	
Cyfrowe przetwarzanie sygnałów przez Arduino Uno234Cyfrowe przetwarzanie sygnałów przez Arduino Due235Generowanie kodu filtrującego238Transformacja Fouriera241Analizator spektrum241Pomiar częstoliwości244Podsumowanie244Podsumowanie247Zmiana skali247Zmiana skali247Dlaczego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie biblioteki255Kiedy należy tworzyć biblioteki?255Vitwórz plik implementacji259Utwórz plik implementacji259Utwórz plik implementacji259Utwórz plik implementacji260Publikacja biblioteki a GitHubie261Towrzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Pityki Arduino265Pytki Arduino265Neozenie wielbioteki na GitHubie261Towrzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Pityki Arduino265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265 <tr< td=""><td>Prosty filtr dolnoprzepustowy</td><td></td></tr<>	Prosty filtr dolnoprzepustowy	
Cyfrowe przetwarzanie sygnałów przez Arduino Due 235 Generowanie kodu filtrującego 238 Transformacja Fouriera 241 Analizator spektrum 241 Analizator spektrum 241 Pomiar częstotliwości 244 Podsumowanie 241 Rozdział 16. Praca z użyciem tylko jednego procesu 247 Zmiana skali 247 Dlaczego wątki są zbędne 248 Funkcje setup i loop 248 Najperw wykrywaj, a dopiero później reaguj 248 Pauza, która nie blokuje mikrokontrolera 249 Biblioteka Timer 250 Diagramy stanów 251 Automaty skończone w Arduino 253 Podsumowanie 254 Rozdział 17. Tworzenie bibliotek 255 Kiedy należy tworzyć biblioteki? 255 Stosowanie klas i metod 256 Orkef interfejs programistyczny 257 Utwórz plik mgłementacji 259 Utwórz plik nagłówkowy 258 Utwórz plik nagłówkowy 258 Utwórz plik nagłówkowy 260 Publikacja biblioteki na Git	Cyfrowe przetwarzanie sygnałów przez Arduino Uno	
Generowanie kodu filtrującego 238 Transformacja Fouriera 241 Analizator spektrum 241 Podiar częstotliwości 244 Podsumowanie 244 Rozdział 16. Praca z użyciem tylko jednego procesu 247 Zmiana skali 247 Zlaiana skali 247 Dlaczego wątki są zbędne 248 Funkcje setup i loop 248 Najpierw wykrywaj, a dopiero później reaguj 248 Pauza, która nie blokuje mikrokontrolera 249 Biblioteka Timer 250 Diagramy stanów 251 Automaty skończone w Arduino 253 Podsumowanie 254 Rozdział 17. Tworzenie bibliotek 255 Kiedy należy tworzyć biblioteki? 255 Stosowanie klas i metod 256 Przykładowa biblioteka TEA5767 Radio 256 Określ interfejs programistyczny 257 Utwórz plik ragłówkowy 258 Utwórz plik kas i metod 260 Publikacja biblioteki 260 Podsumowanie 259 Utwórz plik kagłówkowy 258	Cyfrowe przetwarzanie sygnałów przez Arduino Due	
Transformacja Fouriera241Analizator spektrum241Pomiar częstotliwości244Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Dlaczego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Ohreśl interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik nagłówkowy258Utwórz plik nagłówkowy259Utwórz plik nagłówkowy259Utwórz folder z przykładami260Publikacja biblioteki na GitHubie261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Phytki Arduino265Komponenty i moduły265Dystrybutorzy265Cystrybutorzy265Dystrybutorzy265Dystrybutorzy266Zestawy startowe Arduino267	Generowanie kodu filtrującego	
Analizator spektrum 241 Pomiar częstotliwości 244 Podsumowanie 244 Podsumowanie 244 Rozdział 16. Praca z użyciem tylko jednego procesu 247 Zmiana skali 247 Dlaczego wątki są zbędne 248 Funkcje setup i loop 248 Najpierw wykrywaj, a dopiero później reaguj 248 Pauza, która nie blokuje mikrokontrolera 249 Biblioteka Timer 250 Diagramy stanów 251 Automaty skończone w Arduino 253 Podsumowanie 254 Rozdział 17. Tworzenie bibliotek 255 Kiedy należy tworzyć biblioteki? 255 Stosowanie klas i metod 256 Określ interfejs programistyczny 257 Utwórz plik najłówkowy 258 Utwórz plik ingłówkowy 258 Utwórz plik najłówkowy 259 Utwórz plik ze słowami kluczowymi 259 Utwórz plik ze słowami kluczowymi 259 Utwórz plik ze słowami kluczowymi 260 Publikacja biblioteki na GitHubie 261 Gotatek A. Podzespoły <td>Transformacja Fouriera</td> <td></td>	Transformacja Fouriera	
Pomiar częstotliwości244Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Dlaczego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie biblioteki?255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik nagłówkowy259Utwórz plik ze słowani kluczowymi259Utwórz plik ze słowani kluczowymi259Utwórz plik nagłówkowi261Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261Otatek A. Podzespoły265Pytki Arduino265Nystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265 <td>Analizator spektrum</td> <td></td>	Analizator spektrum	
Podsumowanie244Rozdział 16. Praca z użyciem tylko jednego procesu247Zmiana skali247Dlaczego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik nagłówkowy259Utwórz plik inplementacji259Utwórz plik inplementacji260Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261Diatek A. Podzespoły265Piytki Arduino265Piytki Arduino265Stosomanie v Arduino265Stosowanie v Arduino265Stosowanie v Arduino265Stosowanie repozytorium262Podsumowanie265Stosowanie repozytorium265Stosowanie repozytorium265Stosowanie repozytorium265Stosowanie repozytorium265Stosowanie repozytorium265Piytki Arduino265Dystrybutorzy265 <td>Pomiar częstotliwości</td> <td></td>	Pomiar częstotliwości	
Rozdział 16. Praca z użyciem tylko jednego procesu	Podsumowanie	
Zmiana skali247Dlaczego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik ze słowami kluczowymi259Utwórz plik ze słowami kluczowymi259Utwórz plik iz e słowami kluczowymi260Publikacja biblioteki261Publikacja biblioteki261Grethub261Otrestowanie biblioteki262Podsumowanie262Podsumowanie262Podsumowanie261Stosowanie klas i metod262Publikacja biblioteki261Otrestowanie biblioteki261Otrestowanie biblioteki261Publikacja biblioteki261Publikacja biblioteki262Podsumowanie265Pityki Arduino265Komponenty i moduły265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dodatek A. Podzespoły265Nomponenty i moduły265<	Rozdział 16. Praca z użyciem tylko jednego procesu	
Dlaczego wątki są zbędne248Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik implementacji259Utwórz plik implementacji259Utwórz plik implementacji260Publikacja biblioteki261Publikacja biblioteki261Tworzenie biblioteki261Dodatek A. Podzespoły265Płytki Arduino265Płytki Arduino265Stosmowanie264Dodatek A. Podzespoły265Stosmowanie265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dodatek A. Podzespoły265Nationa265Stomponenty i moduły265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Distrobe ki Arduino265Dotatek A. Podzespoły265Dotatek A. Podzespoły265Dotatek A. Podzespoły<	Zmiana skali	
Funkcje setup i loop248Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik implementacji259Utwórz plik implementacji259Utwórz plik ingłówkowy258Utwórz plik is a GitHubie260Publikacja biblioteki261Publikacja biblioteki261Dodatek A. Podzespoły262Podsumowanie264Dodatek A. Podzespoły265Komponenty i moduły265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Startowe Arduino267	Dlaczego watki są zbędne	
Najpierw wykrywaj, a dopiero później reaguj248Pauza, która nie blokuje mikrokontrolera249Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik ze słowami kłuczowymi259Utwórz plik ze słowami kłuczowymi259Utwórz jołki ce z przykładami260Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261Dodatek A. Podzespoły265Płytki Arduino265Komponenty i moduły265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Zestawy startowe Arduino267	Funkcje setup i loop	
Pauza, która nie blokuje mikrokontrolera 249 Biblioteka Timer 250 Diagramy stanów 251 Automaty skończone w Arduino 253 Podsumowanie 254 Rozdział 17. Tworzenie bibliotek 255 Kiedy należy tworzyć biblioteki? 255 Stosowanie klas i metod 256 Przykładowa biblioteka TEA5767 Radio 256 Określ interfejs programistyczny 257 Utwórz plik nagłówkowy 258 Utwórz plik implementacji 259 Utwórz z przykładami 260 Testowanie biblioteki 261 Publikacja biblioteki na GitHubie 261 GitHub 261 Tworzenie repozytorium 262 Podsumowanie 264	Najpierw wykrywaj, a dopiero później reaguj	
Biblioteka Timer250Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik inplementacji259Utwórz plik ze słowani kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki na GitHubie261Publikacja biblioteki na GitHubie261GitHub261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Komponenty i moduły265Dystrybutorzy266Zestawy startowe Arduino267	Pauza, która nie blokuje mikrokontrolera	
Diagramy stanów251Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz folder z przykładami260Testowanie biblioteki260Publikacja biblioteki na GitHubie261GitHub261Godsumowanie262Podsumowanie265Pytki Arduino265Strybutorzy265Otatek A. Podzespoły265Dystrybutorzy265Dystrybutorzy266Zestawy startowe Arduino267	Biblioteka Timer	
Automaty skończone w Arduino253Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Publikacja biblioteki na GitHubie261Publikacja biblioteki na GitHubie261GitHub262Podsumowanie265Płytki Arduino265Styrybutorzy265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy266Zestawy startowe Arduino267	Diagramy stanów	
Podsumowanie254Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki261Publikacja biblioteki na GitHubie261GitHub261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Plytki Arduino265Stomponenty i moduły265Dystrybutorzy266Zestawy startowe Arduino267	Automaty skończone w Arduino	
Rozdział 17. Tworzenie bibliotek255Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki261Publikacja biblioteki na GitHubie261GitHub262Podsumowanie262Podsumowanie265Plytki Arduino265Stryputorzy265Dystrybutorzy265Dystrybutorzy266Zestawy startowe Arduino266Zestawy startowe Arduino267	Podsumowanie	
Kiedy należy tworzyć biblioteki?255Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki261Publikacja biblioteki na GitHubie261GitHub261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Dystrybutorzy265Dystrybutorzy265Dystrybutorzy265Zestawy startowe Arduino267	Rozdział 17. Tworzenie bibliotek	
Stosowanie klas i metod256Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki261Publikacja biblioteki na GitHubie261GitHub261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Dystrybutorzy265Zostawy startowe Arduino266Zestawy startowe Arduino267	Kiedv należy tworzyć biblioteki?	
Przykładowa biblioteka TEA5767 Radio256Określ interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki260Publikacja biblioteki261Publikacja biblioteki na GitHubie261GitHub261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Dystrybutorzy266Zestawy startowe Arduino267	Stosowanie klas i metod	
Ókreśl interfejs programistyczny257Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki260Publikacja biblioteki261Publikacja biblioteki na GitHubie261 <i>Tworzenie repozytorium</i> 262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Dystrybutorzy266Zestawy startowe Arduino267	Przykładowa biblioteka TEA5767 Radio	
Utwórz plik nagłówkowy258Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki260Publikacja biblioteki261Publikacja biblioteki na GitHubie261 <i>GitHub</i> 261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Dystrybutorzy265Dystrybutorzy266Zestawy startowe Arduino267	, Określ interfejs programistyczny	
Utwórz plik implementacji259Utwórz plik ze słowami kluczowymi259Utwórz folder z przykładami260Testowanie biblioteki260Publikacja biblioteki261Publikacja biblioteki na GitHubie261 <i>GitHub</i> 261 <i>Tworzenie repozytorium</i> 262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Komponenty i moduły265Dystrybutorzy266Zestawy startowe Arduino267	Utwórz plik nagłówkowy	
Utwórz plik ze słowami kluczowymi 259 Utwórz folder z przykładami 260 Testowanie biblioteki 260 Publikacja biblioteki 261 Publikacja biblioteki na GitHubie 261 <i>GitHub</i> 261 <i>Tworzenie repozytorium</i> 262 Podsumowanie 264 Dodatek A. Podzespoły 265 Płytki Arduino 265 Dystrybutorzy 265 Dystrybutorzy 266 Zestawy startowe Arduino 267	Utwórz plik implementacji	
Utwórz folder z przykładami 260 Testowanie biblioteki 260 Publikacja biblioteki 261 Publikacja biblioteki na GitHubie 261 <i>GitHub</i> 261 <i>Tworzenie repozytorium</i> 262 Podsumowanie 264 Dodatek A. Podzespoły 265 Płytki Arduino 265 Komponenty i moduły 265 Dystrybutorzy 266 Zestawy startowe Arduino 267	Utwórz plik ze słowami kluczowymi	
Testowanie biblioteki 260 Publikacja biblioteki 261 Publikacja biblioteki na GitHubie 261 <i>GitHub</i> 261 <i>Tworzenie repozytorium</i> 262 Podsumowanie 264 Dodatek A. Podzespoły 265 Płytki Arduino 265 Dystrybutorzy 266 Zestawy startowe Arduino 267	Utwórz folder z przykładami	
Publikacja biblioteki 261 Publikacja biblioteki na GitHubie 261 GitHub 261 Tworzenie repozytorium 262 Podsumowanie 264 Dodatek A. Podzespoły 265 Płytki Arduino 265 Komponenty i moduły 265 Dystrybutorzy 266 Zestawy startowe Arduino 267	Testowanie biblioteki	
Publikacja biblioteki na GitHubie 261 GitHub 261 Tworzenie repozytorium 262 Podsumowanie 264 Dodatek A. Podzespoły 265 Płytki Arduino 265 Komponenty i moduły 265 Dystrybutorzy 266 Zestawy startowe Arduino 267	Publikacja biblioteki	
GitHub261Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Komponenty i moduły265Dystrybutorzy266Zestawy startowe Arduino267	Publikacja biblioteki na GitHubie	
Tworzenie repozytorium262Podsumowanie264Dodatek A. Podzespoły265Płytki Arduino265Komponenty i moduły265Dystrybutorzy266Zestawy startowe Arduino267	GitHub	
Podsumowanie	Tworzenie repozytorium	
Dodatek A. Podzespoły265Płytki Arduino265Komponenty i moduły265Dystrybutorzy266Zestawy startowe Arduino267	Podsumowanie	
Płytki Arduino	Dodatek A. Podzespoły	
Komponenty i moduły	Płytki Arduino	
Dystrybutorzy	Komponenty i moduły	
Zestawy startowe Arduino	Dystrybutorzy	
	Zestawy startowe Arduino	

Rozdział 3.

Kiedy Arduino to nie Arduino?

Zespół Arduino wykonał świetną pracę, przez co środowisko programistyczne Arduino jest modułowe i można łatwo dodawać do niego nowe płytki. Co za tym idzie, możliwe jest dodanie nowego oprogramowania wspierającego płytki kompatybilne z Arduino i programowanie ich za pomocą IDE z użyciem tych samych poleceń.

Możesz programować nie tylko gotowe płytki, które widać na rysunku 3.1, lecz możesz również użyć Arduino IDE do programowania samych mikrokontrolerów (innych niż te zastosowane w płytkach Arduino).

Rysunek 3.1. Od lewej do prawej: Trinket m0, Circuit Playground Express, Wemos D1 Mini, LOLIN32, NodeMCU

Rozszerzalna architektura Arduino IDE

Arduino IDE, a tak naprawdę cały projekt Arduino, ma otwarte źródło (licencja *open source*). Oznacza to, że możesz przeanalizować i skopiować na własne potrzeby cały kod Arduino IDE i kod, który uruchamiany jest na płytce Arduino. Mimo że formaliści kłóciliby się ze stwierdzeniem, że sprzęt Arduino całkowicie spełnia założenia licencji *open source*, faktem jest, że wszystkie schematy i informacje potrzebne do zrobienia własnego Arduino są ogólnie dostępne. Ponadto Arduino IDE jest elastyczne i nie ma tak naprawdę potrzeby zmiany jego kodu źródłowego. Jednym z kluczowych powodów takiego rozwiązania jest możliwość łatwego i szybkiego podłączenia innych platform lub jednostek bazowych do Arduino IDE.

Najprostszym sposobem na dodanie sterownika innej płytki jest skorzystanie z menedżera płytek (rysunek 3.2), który znajduje się w *Narzędzia/Płytka/Menedżer płytek*.

Alternativese that	~
S Menedzer płytek	^
Wpisz Wszystko V	
Arduino AVR Boards	
Built-In by Arduino wersja 1.8.1 INSTALLED	
Płytki dołączone w tej paczce:	
Arduno Yun, Arduno Uno, Arduno Uno WiFi, Arduno Diecimila, Arduno Nano, Arduno Mega, Arduno MegaADK, Arduno Leonardo, Arduno Leonardo Ethernet Arduno Micra Arduno Esplora, Arduno Micra Arduno Micra Eta Arduno Eio Arduno MegaADK, Arduno L	
Arduino Pro, Arduino ATMegaNG, Arduino Robot Control, Arduino Robot Motor, Arduino Cama, Adafruit Circuit Playground, Arduino Yin Mini,	
Arduino Industrial 101, Linino One.	
Online Help More Info	
Wybierz wersję 🗸 instaluj Aktualizacja	
Arduino megaAVR Boards	- I.
by Arduino	
Plytki dołączone w tej paczce:	
Arduino Uno WiFi Kev2, Arduino Nano Every. Online Help	
More Info	
Arduino SAM Boards (32-bits ARM Cortex-M3)	
by Arduino	
Prytka dołączone w tej paczce:	
Online Help	~
Zam	knij

Rysunek 3.2. Menedżer płytek

Domyślnie nie znajdziesz tam wszystkich płytek, a szczególnie tych mniej popularnych, pochodzących z mniej oficjalnych źródeł. Możesz je jednak dodać poprzez wprowadzenie adresu URL w polu *Dodatkowe adresy URL do menedżera płytek* w oknie preferencji, które otworzysz z poziomu menu *Plik* (rysunek 3.3).

W kolejnym podrozdziale dodamy wsparcie dla popularnej płytki Adafruit Circuit Playground.

Adafruit Circuit Playground Express

Płytka Adafruit Circuit Playground (rysunek 3.4) może być programowana za pomocą wielu różnych języków i środowisk, w tym Arduino. Po części płytka została zaprojektowana do celów edukacyjnych, więc ma już wbudowanych kilka urządzeń peryferyjnych, między innymi: 10 diod LED RGB "Neopixel", brzęczyk, dwa przyciski, akcelerometr i mikrofon.

W przeciwieństwie do Arduino ta płytka nie ma procesora z rodziny Mega i jej mikrokontroler oparty jest na architekturze Arm. Teraz użyjemy tej płytki, aby pokazać zastosowanie menedżera płytek.

Otwórz menedżera płytek, w polu wyszukiwania wpisz **Circuit Playground Express** (rysunek 3.5) i wybierz pierwszą pozycję z listy. Zapewne zauważysz, że ten sterownik daje wsparcie dla dużej liczby płytek, w tym Circuit Playground Express. Naciśnij przycisk *Instaluj*, który znajduje się obok informacji o wersji.

Preferencje		×			
Ustawienia Sieć					
Lokalizacja szkicownika:					
C:\Users\Laptop\Documents\Arduino	Przeglądaj				
Język edytora:	Język Polski (Polish) V (wymagany restart Arduino)				
Rozmiar czcionki edytora:	16				
Powiększenie interfejsu	✓ automatyczne 100 🐨 % (wymagany restart Arduino)				
Motyw:	Motyw domyślny 🗸 (wymagany restart Arduino)				
Pokaż szczegółowe informacje podczas	: 🗹 kompilacji 🔲 wgrywania				
Ostrzeżenia kompilatora:	Brak ~				
✓ Wyświetl numery lini	Włącz zawijanie tekstu				
🗹 Zweryfikuj kod po wgraniu	Użyj zewnętrznego edytora				
🗸 Sprawdź aktualizację przy starcie	🗹 Zapisuj przy weryfikacji lub ładowaniu				
Use accessibility features					
Dodatkowe adresy URL do menedżera płytek:					
Więcej preferencji może być edytowanych bezpośrednio w pliku					
C:\Users\Laptop\AppData\Local\Arduino15\preferences.bxt					
(edytuj tylko kiedy Arduino nie pracuje)					
	OK Anuluj	i			

Rysunek 3.3. Dodawanie adresów URL do menedżera płytek

Rysunek 3.4. Płytka Adafruit Circuit Playground

💿 Menedżer płytek	×	
Wpisz Wszystko 🔍 Circuit Playground Express		
Arduino SAMD Boards (32-bits ARM Cortex-M0+)	^	
by Arduino Piytki dołączone w tej paczce: Arduino MKR WiFi 1010, Arduino Zero, Arduino MKR1000, Arduino MKRZERO, Arduino MKR FOX 1200, Arduino MKR WAN 1300, Arduino MKR WAN 1310, Arduino MKR GSM 1400, Arduino MKR NB 1500, Arduino MKR Vidor 4000, Arduino Nano 33 IoT, Arduino M0 Pro, Arduino M0, Arduino Tian, Adafruit Circuit Playground Express. <u>Online Help</u> <u>More Info</u>		
1.8.9 v Instaluj		
Adafruit SAMD Boards	1	
by Adafruit Prytki dołączone w tej paczce: Adafruit Feather MO, Adafruit Feather MO Express, Adafruit Metro MO Express, Adafruit Circuit Playground Express, Adafruit Gemma MO, Adafruit Trinket MO, Adafruit ItsyBitsy MO, Adafruit pIRkey MO, Adafruit Metro M4, Adafruit Grand Central M4, Adafruit ItsyBitsy M4, Adafruit Peather M4 Express, Adafruit Hallowing MO, Adafruit NeoTrellis M4, Adafruit PyPortal M4, Adafruit PyBadge M4, Adafruit Metro M4 AirLift, Adafruit Matrix Portal M4, Adafruit BLM Badge, Adafruit QT Py. <u>Online Help.</u> <u>More Info</u>		
Advánik sprca		
Pryklidolączone w tej pacze:	\mathbf{v}	
Zamk	nij	

Rysunek 3.5. Dodawanie płytki za pomocą menedżera płytek

Po zainstalowaniu sterownika na liście dostępnych płytek powinna pojawić się płytka Circuit Playground Express (rysunek 3.6).

💿 В	link Ard	uino 1.8.11 Hourly Build 2019/11/11 03:33	
Plik E	dytuj Szl	ic Narzędzia Pomoc	
	•	Automatyczne formatowanie	Ctrl+T
Dlin	1k	Archiwizuj szkic Popraw kodowanie i przeładuj	
1 / 2	/* Bli	Zarządzaj bibliotekami Monitor portu szeregowego Kreślarka	Ctrl+Shift+I Ctrl+Shift+M Ctrl+Shift+L
3		WiFi101 / WiFiNINA Firmware Upd	ater
4	Tur	Plytka: "Arduino/Genuino Uno"	
6	Mos	Port	>
7	it	Pobierz informacje o płytce	
8	the	Programator: "AVRISP mkll"	>
9	If	Wypal bootloader	
LO	mod	el, check the Technical	Specs of yo
.1	<u>htt</u>	os://www.arduino.cc/en/M	ain/Product
12			
13	mod	ified 8 May 2014	
14	by	Scott Fitzgerald	
15	mod	ified 2 Sep 2016	
16	by i	Arturo Guadalupi	
17	mod	ified 8 Sep 2016	
10	1		
	_		

Rysunek 3.6. *Circuit Playground Express na liście płytek*

Aby w pełni wykorzystać wbudowane urządzenia peryferyjne płytki Circuit Playground Express, dodatkowo musisz zainstalować odpowiednie biblioteki Arduino. W tym celu otwórz menedżera bibliotek i wyszukaj *Playground Express*. Przetestuj jeden z przykładowych szkiców

Kup ksi k

dołączonych do biblioteki, który znajdziesz w menu *Plik/Przykłady*, choćby szkic *HelloNeoPixels* z kategorii *Hello Circuit Playground*. Przejrzyj pozostałe przykładowe szkice biblioteki *Circuit Playground*, aby zobaczyć, co możesz jeszcze zrobić z płytką, programując ją tak jak standardową płytkę Arduino.

Uwaga: jeśli korzystasz z systemu Windows, to aby móc używać płytki, musisz zainstalować sterownik dla tego systemu (zobacz *https://learn.adafruit.com/introducing-circuit-playground/windows-driver-installation*). Użytkownicy systemów Linux i macOS nie muszą tego robić.

Wszystkie informacje na temat płytki Playground Express znajdziesz na stronie: *https://learn. adafruit.com/introducing-circuit-playground/.*

Firma Adafruit ma w swojej ofercie także duży wybór płytek kompatybilnych z Arduino. Odwiedź ich stronę i wyszukaj "feather", "trinket" i "flora", aby sprawdzić inne produkty tej firmy. Niektóre z nich mają specjalne funkcjonalności, na przykład wbudowaną antenę radiową, Wi-Fi czy ładowarkę baterii LiPo.

NodeMCU

Płytka NodeMCU i płytka z tej samej rodziny, Wemos D1 Mini (rysunki 3.7 i 3.8), to bardzo tanie płytki kompatybilne z Arduino z wbudowanym modułem Wi-Fi. Obie są oparte na module mikrokontrolera ESP8266 WiFi. Można go programować za pomocą wielu języków programowania, w tym Arduino.

Rysunek 3.7. Płytka NodeMCU

Rysunek 3.8. Płytka Wemos D1 Mini

Pomimo że na pierwszy rzut oka wydaje się, że płytka NodeMCU ma tyle samo pinów wejścia/wyjścia ogólnego przeznaczenia (GPIO) co Arduino Pro Mini, w rzeczywistości ma ich dużo mniej — tylko 1 wejście analogowe i 9 cyfrowych wejść/wyjść. Płytka Wemos D1 Mini korzysta z tego faktu i dzięki temu jest mniejsza.

Odwołując się do tych pinów, należy dodawać literę *A* lub *D*, na przykład A0, D4. To podejście różni się od standardowej płytki Arduino, gdzie litera *D* może być pominięta. Zauważ, że płytka NodeMCU, pokazana na rysunku 3.7, ma błąd w oznaczeniach pinów — D2 występuje dwukrotnie.

Jeśli używasz systemu Windows lub Linux, możliwe, że aby móc stosować te płytki, będziesz musiał zainstalować sterowniki dla CP2102 (dla NodeMCU) lub interfejsu USB CH340 (dla Wemos D1 Mini) (zobacz, odpowiednio, *www.silabs.com/products/development-tools/software/ usb-to-uart-bridge-vcp-drivers* lub *www.arduined.eu/ch340-windows-8-driver-download*).

Żeby dodać wsparcie dla tych płytek do Arduino IDE, otwórz menedżera płytek, wyszukaj *ESP8266* i zainstaluj *esp8266 by ESP8266 Community*. Jeśli wgrasz szkic o nazwie *03_01_node_ mcu_blink*, zobaczysz, jak miga wbudowana dioda LED (która w przypadku NodeMCU zazwyczaj podłączona jest do pinu D0, ale czasami do pinu D1 lub D2, a na Wemos D1 Mino — do pinu D4). Wszystkie przytoczone w tej książce szkice znajdziesz na stronie *http://www.helion.pl/ ksiazki/arpok2.htm*.

Należy pamiętać, że wejścia i wyjścia tych płytek działają pod napięciem 3,3 V, dlatego nie podłączaj urządzeń wyjścia 5 V do wejść 3,3 V, bo zniszczysz płytkę. Każde cyfrowe wyjście może dostarczyć 12 mA. Jest to mniej niż w przypadku Arduino Uno, które może dostarczyć 40 mA, ale jest to wciąż wystarczająca ilość prądu, aby dioda LED jasno świeciła.

W rozdziale 14. znajdziesz przykłady wykorzystania wbudowanej funkcji Wi-Fi tych płytek oraz płytki ESP32 z kolejnej części.

ESP32

Często ograniczona liczba pinów GPIO płytki NodeMCU i innych płytek kompatybilnych z Arduino opartych na ESP8266 nie stanowi problemu. Jednak czasami możesz potrzebować ich więcej lub będziesz chciał użyć Bluetootha. W takich przypadkach wybierz płytkę z ESP32.

Firmy SparkFun i Adafruit produkują wysokiej jakości płytki oparte na ESP32, dla których stworzona jest rzetelna dokumentacja (na przykład SparkFun ESP32 Thing i Adafruit Huzzah32 Feather Board). Obie płytki mają wbudowaną możliwość ładowania baterii LiPo, co sprawia, że są doskonałym wyborem dla projektów mobilnych. Jeśli chcesz wydać mniej, w internecie możesz znaleźć tańsze alternatywy, między innymi pokazaną na rysunku 3.1 płytkę LOLIN32.

Aby móc dodać płytki oparte na ESP32 z poziomu menedżera płytek, musisz najpierw dodać adres URL: *https://dl.espressif.com/dl/package_esp32_index.json* w oknie preferencji, w polu *Dodatkowe adresy URL do menedżera płytek* (zobacz rysunek 3.3). Dzięki temu w menedżerze płytek znajdziesz płytkę *esp32 by Espresif Systems*.

Więcej informacji na temat projektu ESP32 jest dostępnych na stronie: https://github.com/ espressif/arduino-esp32. Znajdziesz tam również obecny status projektu, ponieważ podczas pisania tej książki niektóre funkcjonalności nie zostały jeszcze wprowadzone, na przykład wyjście PWM (analogWrite).

ESP32 jest godnym uwagi urządzeniem z podwójnym procesorem, dużą ilością pamięci i naprawdę niskim zużyciem mocy, dzięki czemu doskonale sprawdzi się w projektach związanych z internetem rzeczy. Do tego zagadnienia wrócimy w rozdziale 14.

Mikrokontrolery ATtiny

Niektóre projekty wymagają niewiele, jeśli chodzi o piny wejścia i wyjścia i zużywają zaledwie niewielki procent dostępnej 32-kilobajtowej pamięci flash mikrokontrolera ATmega328. W przypadku takich projektów możesz rozważyć zastosowanie płytki opartej na pokrewnym mikrokontrolerze z rodziny ATtiny. Te mikrokontrolery mają wiele wspólnych cech z ATmega, ale jak sama nazwa wskazuje (ang. *tiny* — malutki), ogólnie mają wszystkiego mniej, włączając w to piny i ilość pamięci każdego typu. Zaletami oczywiście są niska cena i mały rozmiar. ATtiny jest doskonałym kolejnym krokiem w przygodzie z Arduino Uno. Możesz zrezygnować z większości płytek Arduino i opierać swoje projekty tylko na jednym mikrokontrolerze.

ATtiny44

Dla przykładu przyjrzyjmy się, jak używa się mikrokontrolera ATtiny44. Ten chip plasuje się między pełnowymiarowymi mikrokontrolerami i naprawdę małymi 8-bitowymi kontrolerami ATtiny85.

ATtiny44 ma tylko 4 kB pamięci flash i 256 bajtów pamięci RAM. Jeśli zabraknie Ci miejsca na program, możesz zawsze użyć mikrokontrolera ATtiny84 z kompatybilnymi pinami i 8-kilobajtową pamięcią flash.

Na rysunku 3.9 widać mikrokontroler ATtiny44 z podłączoną diodą LED (sprawimy, że będzie migać) i opornikami umieszczonymi na płytce stykowej. Chip ma 14 pinów: 2 zasilania, 1 resetu, a pozostałe 11 to piny GPIO (zobacz rysunek 3.10).

Rysunek 3.9. Mikrokontroler ATtiny44 na płytce stykowej

Rysunek 3.10. Układ pinów ATtiny44

Arduino jako programator

Może pamiętasz, że w rozdziale 2. Arduino Uno pełnił funkcję programatora w celu wgrania programu rozruchowego na inną płytkę Arduino. Arduino Uno możemy również użyć do zaprogramowania mikrokontrolera ATtiny, lecz zamiast wgrywać program rozruchowy, na mikrokontrolerze umieścimy cały szkic (w tym przypadku program sprawiający, że dioda LED miga).

Zanim zrobisz cokolwiek innego, musisz wgrać szkic *ArduinoISP* na Arduino Uno. Znajdziesz go w menu *Plik*, w przykładach. Następnie możesz podłączyć Arduino Uno do ATtiny w opisany niżej sposób. Ważne jest, aby najpierw wgrać szkic *ArduinoISP*, ponieważ po podłączeniu kondensatora 10 µF do pinu Reset Arduino, nie będziesz mógł wgrać żadnego szkicu, dopóki kondensator nie zostanie usunięty.

Do wykonania pokazanych w tabeli 3.1 połączeń między Arduino Uno i ATtiny można użyć przewodów podłączeniowych zakończonych obustronnie końcówką męską. Połączenia pokazano także na rysunku 3.11.

Funkcja	Arduino Uno	ATtiny44
SCK (zegar)	13	9
MISO (wejście urządzenia nadrzędnego, wyjście urządzenia podrzędnego)	12	8
MOSI (wyjście urządzenia nadrzędnego, wejście urządzenia podrzędnego)	11	7
Reset	10	4

Tabela 3.1. Połączenie Arduino Uno z ATtiny44 w celu programowania

Rysunek 3.11. Połączenie Arduino Uno z ATtiny44 w celu programowania

Można łatwo określić, w która stronę umieścić chip na płytce stykowej, gdyż ATtiny44 ma małą dziurkę na górnej krawędzi, obok pinu 1 (zobacz rysunek 3.10). Możliwe, że aby dopasować mikrokontroler do otworów płytki stykowej, będziesz musiał delikatnie wygiąć piny po obu stronach. Zazwyczaj sprawdza się lekkie przyciśnięcie obu stron do blatu stołu.

Kondensator ma jedną nóżkę dłuższą. Jest to przewód dodatni i należy podłączyć go do pinu Reset na Arduino. Podobnie jest w przypadku diody LED — dłuższa nóżka jest dodatnia.

Instalacja ATtinyCore w IDE

Dla ATtiny dostępnych jest wiele oprogramowań, które możesz dodać do swojego Arduino IDE. W niniejszej książce wykorzystano oprogramowanie o nazwie ATtinyCore, a jego dokumentację można znaleźć pod adresem: *https://github.com/SpenceKonde/ATtinyCore*.

Na tej stronie znajdziesz również pełną listę obsługiwanych przez ATtinyCore płytek wraz z bardzo przydatnymi schematami układu ich pinów.

Oprogramowanie jest dostępne z poziomu menedżera płytek, jednak najpierw musisz dodać URL (*http://drazzy.com/package_drazzy.com_index.json*) w oknie preferencji (zobacz ry-sunek 3.4).

Po dodaniu adresu URL otwórz menedżera płytek, wyszukaj *attinycore* i zainstaluj najnowszą wersję.

Zegary, kryształy i bezpieczniki

Już wszystkie przewody są podłączone i Arduino Uno może pełnić funkcję programatora dla ATtiny. Jesteśmy prawie gotowi do wgrania szkicu na mikrokontroler, ale uprzednio musimy nieco skonfigurować Arduino IDE.

Zacznij od wyboru płytki ATtiny24/44/84 z sekcji ATtinyCore (zobacz rysunek 3.12).

Rysunek 3.12. Wybór płytki ATtiny24/44/84

Spowoduje to dodanie kilku opcji dotyczących ATtiny w menu *Narzędzia*. Dla większości z nich można zostawić ustawienia domyślne. Powinieneś zmienić opcję *Chip* na *ATtiny44* (zobacz rysunek 3.12). Upewnij się również, że opcja *Clock* (zegar) ma wartość 8 *MHz* (*internal*), a w menu *Narzędzia* ustaw *Programator* (druga pozycja od końca) na *Arduino as ISP*. Jeśli masz inny programator, to możesz go również wybrać w tym miejscu.

Niektóre opcje tego menu mają wpływ na "bezpieczniki", które określają zachowanie mikrokontrolera, a nawet konfigurację danych pinów. Na przykład jeśli ustawisz opcję *Clock* na 8 *MHz (internal)*, to informujesz Arduino IDE, że piny 2 i 3 ATtiny nie będą potrzebne rezonatorowi kwarcowemu, więc mogą być używane jako piny GPIO. Tutaj musimy być ostrożni, bo jeśli na przykład ustawimy opcję *Clock* na 16 *MHz (external)*, to gdy będziemy chcieli zaprogramować ATtiny, okaże się, że nie jest to możliwe bez rezonatora kwarcowego. W rezultacie "zabetonowalibyśmy" nasz chip. Na szczęście wprowadzone w tych opcjach zmiany nie dają żadnego efektu, dopóki nie naciśniesz funkcji *Wypal bootloader*, która znajduje się na końcu menu *Narzędzia.* W rzeczywistości ta funkcja nie wgrywa programu rozruchowego na ATtiny, a jedynie ustawia bezpieczniki. W końcu możesz wgrać szkic na mikrokontroler. Możesz użyć szkicu o nazwie 03_02_ attiny44_blink, który znajduje się na stronie http://www.helion.pl/ksiazki/arpok2.htm. Aby wgrać szkic na ATtiny, wystarczy, że naciśniesz przycisk Wgraj, tak jak w przypadku standardowego Arduino. Po zakończonym wgrywaniu dioda LED powinna zacząć migać.

Minimalne Arduino

Jak pewnie zauważyłeś, większą część Arduino Uno zastąpiliśmy chipem umieszczonym na płytce stykowej. Zatem jak udało nam się pozbyć tak wielu elementów i co poświęciliśmy w zamian?

Przede wszystkim utraciliśmy źródło zasilania. Nie mamy już stabilizatora napięcia. W tym momencie ATtiny korzysta z zasilania Arduino Uno. Jednak ATtiny zadowoli się każdym źródłem zasilania o napięciu z zakresu od 2,7 V do 5,5 V. Więc gdy zaprogramujesz już ATtiny, możesz zasilać go napięciem 3 V z dwóch baterii AA.

Z powodu tego, że użyliśmy Arduino Uno jako programatora, nie potrzebowaliśmy chipu interfejsu USB i powiązanych z nim komponentów. Nie mamy również oscylatora kwarcowego 16 MHz, małego srebrnego komponentu, który możesz znaleźć na Arduino Uno. ATtiny ma swój własny wbudowany oscylator, który działa o połowę wolniej. Jest to rekompensowane przez oprogramowanie i tak funkcja delay wciąż zatrzymuje program na zadany czas. Wbudowany oscylator nie jest tak dokładny jak zewnętrzny kryształ. Według dokumentacji dokładność oscylatora ATtiny44 wynosi ± 2 procent, natomiast margines błędu zewnętrznego oscylatora to $\pm 0,003$ procent. Jednak w rzeczywistości dokładność oscylatora ATtiny jest dużo lepsza od tej podanej w dokumentacji.

Podsumowanie

W tym rozdziale poznaliśmy kilka płytek, które stanowią alternatywę dla oficjalnych płytek Arduino, włączając w to możliwość stworzenia własnego Arduino za pomocą mikrokontrolera i płytki stykowej. Niektórych z tych urządzeń będziemy używać w kolejnych rozdziałach.

W następnym rozdziale przyjrzymy się przerwaniom i zegarom, dzięki którym Arduino może reagować na określone zdarzenia zewnętrzne i na te zaplanowane.

PROGRAM PARTNERSKI ----- GRUPY HELION

1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI 3. ZBIERAJ PROWIZJĘ

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj! http://program-partnerski.helion.pl

Zostań mistrzem Arduino!

W pewnych kwestiach nic się nie zmienia — Arduino pozostaje praktycznym, tanim mikrokontrolerem, który może komunikować się ze światem zewnętrznym i obsługiwać przeróżne urządzenia elektroniczne. Daje też pole do popisu licznym amatorom i hobbystom. Środowisko programistyczne wciąż ma prosty interfejs, a programowanie płytki samo w sobie jest łatwym zadaniem nawet dla ludzi bez doświadczenia w pisaniu kodu. Zmiany w świecie Arduino dotyczą większych możliwości oraz sukcesywnie dodawanych funkcjonalności, takich jak obsługa bibliotek, czy kolejnych interfejsów.

To drugie, starannie zaktualizowane wydanie przewodnika po programowaniu Arduino, przeznaczonego dla osób, które opanowały podstawy i chcą zdobyć umiejętności na wyższym, profesjonalnym poziomie. W książce dodatkowo ujęto zagadnienia wykorzystania Arduino do komunikacji z urządzeniami szeregowymi oraz z internetem rzeczy (loT). Dowiesz się również, jak używać środowiska programistycznego Arduino do programowania kompatybilnych płytek. Prezentowane treści zostały zilustrowane praktycznymi przykładami stosowania omówionych technik. Nie zabrakło licznych kodów do pobrania, które ułatwią Ci pracę z nawet bardzo ambitnymi projektami.

Dzięki książce dowiesz się, jak:

- konfigurować Arduino IDE i tworzyć efektywne szkice
- poprawić wydajność pracy przy zmniejszeniu natężenia prądu pobieranego przez Arduino
- pracować z różnymi interfejsami: I2C, 1-Wire, SPI, a także z układem TTL, USB i UART
- korzystać z Ethernetu, Bluetootha i DSP oraz z zasobów internetu
- tworzyć i udostępniać własne biblioteki

Dr Simon Monk jest inżynierem cybernetykiem, informatykiem i uzdolnionym hakerem. Po kilku latach pracy na uczelni został przedsiębiorcą. Obecnie dzieli swój czas pomiędzy pisanie rozchwytywanych książek i projektowanie produktów dla MonkMakes — firmy, którą prowadzi wraz z żoną Lindą. Mieszka w Preston w Wielkiej Brytanii.

